Français

Sweden's powerful laser system generates ultra short laser pulses

677
2025-08-20 10:34:01
Voir la traduction

For the first time, researchers at Umeå University, Sweden, have demonstrated the full capabilities of their large-scale laser facility. The team reports generating a combination of ultrashort laser pulses, extreme peak power, and precisely controlled waveforms that make it possible to explore the fastest processes in nature.


Umeå’s laser is 11 m long and generates very short pulses

 


László Veisz and colleagues built Umeå’s new laser


The custom-built laser system, called the Light Wave Synthesizer 100 (LWS100), measures 11 meters in length and 1.5 meters in width – far larger than many commercial lasers which can be comparable in size to a pencil or a book. The size of the LWS100 is necessary to generate and amplify ultrashort laser pulses to extreme peak power.

The work is described in a study published in Nature Photonics (see more, below).

At its peak it generates 100 terawatts. Umeå states that this output is “equivalent to five times the average power consumption of the world – although only for a few millionths of a billionth of a second.” This makes the system the most powerful laser in Sweden and opens the doors to groundbreaking applications, such as understanding ultrafast processes in biomolecules, developing light-driven electronics, and improving solar panel efficiency.

‘Filming’ electron movements
What sets the system apart, continues the Umeå announcement, is that the pulses are not only extremely short (4.3 femtoseconds) and powerful – they also have a reproducible and controlled electric field waveform, identical from pulse to pulse.

Achieving this level of control is particularly challenging in large-scale laser systems, but critical for many advanced applications. This can generate even shorter attosecond x-ray pulses that can be used to “film” the movement of electrons in real time.

“We can now show that the system delivers exactly what we envisioned when it was built. This is a milestone for our research,” said Laszlo Veisz, Professor at Umeå University.

A wide range of experiments are planned for this laser system, taking advantage of its extreme temporal and spatial light concentration. By shaping and focusing ultrashort pulses, attosecond electron bunches can be accelerated to ultra-relativistic energies in compact micro-accelerators, or next-generation X-ray sources can be created to advance attosecond science.

The laser system was installed and inaugurated at the Department of Physics at Umeå University in 2022. This newly-published Nature Photonics paper is the first scientific study to demonstrate its full performance.

Nature Photonics paper abstract

“We report an enhanced optical parametric chirped pulse amplifier system that produces light pulses with a peak power of about 100 TW and a pulse duration as short as 4.3 fs with full waveform control. Coherent field synthesis generates a broadband spectrum, spanning from the visible to the near infrared, through three cascaded amplification stages, each housing two optical parametric amplifiers that sequentially boost complementary spectral regions.

“The resulting light transients are waveform-stabilized to <300 mrad and focused to an intensity of 1021 W cm−2 and exhibit an outstanding high dynamic range in temporal contrast. Together, these characteristics render the system well suited for demanding relativistic laser–plasma experiments.”

Source: optics.org

Recommandations associées
  • Strategy Networks Utilizes Ekinops for Optical Network Upgrade

    Strata Networks is one of the fastest growing communication cooperatives in Utah, and has chosen Ekinops360 from Ekinops as the platform to upgrade its optical transmission network.Strata is headquartered in Roosevelt, Utah, with a network spanning the Uintah Basin, the Vasatch Front, and Denver. The cooperative continues to expand and improve its fiber optic footprint to differentiate its telepho...

    2023-11-21
    Voir la traduction
  • Medium-long wavelength infrared quantum cascade laser of MOCVD on silicon

    Us researchers report 8.1 μm wavelength quantum cascade laser (QCL) grown on silicon (Si) by MOCVD [S. Xu et al., Applications. Physics Letters, v123, p031110, 2023]. "There are no previous reports of QCL growth on silicon substrates by metal-organic chemical vapor deposition (MOCVD)," commented the team from the University of Wisconsin-Madison, the University of Illinois at Urbana-Champaign an...

    2023-08-04
    Voir la traduction
  • Electron beam welding process for thick steel plate of turbine at Aachen Institute of Technology in Germany

    Researchers from the Welding Research Institute of Aachen University of Technology in Germany reported on the development of a stable welding process for electron beam welding of thick plates used in the construction of offshore wind turbines. The relevant research results were published in Materials Science and Engineering Technology under the title "Development of a robust welding process for el...

    2024-07-09
    Voir la traduction
  • Researchers have developed the world's smallest silicon chip quantum photodetector

    Researchers at the University of Bristol have made significant breakthroughs in expanding quantum technology by integrating the world's smallest quantum photodetector onto silicon chips. The paper "A Bi CMOS Electron Photon Integrated Circuit Quantum Photodetector" was published in Science Advances.In the 1960s, scientists and engineers were able to miniaturize transistors onto inexpensive microch...

    2024-05-21
    Voir la traduction
  • The most advanced gas sensing laser technology will be exhibited at the upcoming CEM 2023 exhibition in Barcelona

    Nanoplus Nanosystems and Technologies GmbH is an ISO 9001:14001 certified supplier and one of the world's most famous laser manufacturers for gas sensing applications. The cornerstone of nanoplus's success is its unique patented method of manufacturing DFB laser sources. Nanoplus celebrates its 25th anniversary this year and separated from the University of Vilzburg in 1998.Among the outstanding i...

    2023-09-14
    Voir la traduction