Français

First 6-inch thin film lithium niobate photonic chip wafer pilot production line

448
2025-06-11 10:52:36
Voir la traduction

Recently, Shanghai Jiao Tong University Wuxi Photon Chip Research Institute (CHIPX) located in Binhu District, Wuxi City, has achieved a breakthrough - the first 6-inch thin film lithium niobate photon chip wafer has been produced on China's first photon chip pilot line, and high-performance thin film lithium niobate modulator chips with ultra-low loss and ultra-high bandwidth have been mass-produced on a large scale, with key technical indicators reaching the international advanced level.

Photon chips are the core hardware carrier of photon computing, and their industrialization process is related to the autonomous and controllable strategy in the field of quantum information. Previously, due to the lack of a common key process technology platform, China's photonics technology faced the dilemma of "difficult mass production of laboratory results", which was a "bottleneck" problem restricting the development of the industry. The launch of the photonic chip pilot line became the key to breaking the deadlock. As the "number one project" of the quantum technology race track in Binhu District and a future industrial landmark in the region, Shanghai Jiao Tong University Wuxi Photon Chip Research Institute broke ground at the end of 2022 and took the lead in launching the construction of China's first photon chip pilot line. Now, the first wafer has been successfully offline, and the pilot platform has achieved mass production and production.

 


It is reported that as a high-performance optoelectronic material, thin film lithium niobate has advantages such as ultrafast electro-optic effect, high bandwidth, and low power consumption, showing great potential in fields such as 5G communication and quantum computing. However, due to the high brittleness of thin film lithium niobate materials, the preparation of large-sized thin film lithium niobate wafers has always been challenging. Currently, with the advanced nanoscale processing equipment and rapid process iteration capability of the pilot platform, the process team has systematically solved the bottleneck of wafer level photonic chip integration through a combination of deep ultraviolet (DUV) lithography and thin film etching through extensive process validation and optimization.

Binhu District is one of the main gathering areas for the integrated circuit industry in Wuxi. A number of high-energy level scientific and technological innovation platforms have been established here, including the National Integrated Circuit Design Center and the Intelligent Industry Innovation Center of Tsinghua Wuxi Research Institute; Gathering over 200 integrated circuit enterprises, we have established an integrated circuit design industry cluster represented by companies such as Zhongke Xin, Zhuosheng Microelectronics, and Guoxin Microelectronics, and have been selected as a characteristic industry cluster in the province.

Source: Opticsky

Recommandations associées
  • Researchers use laser doping to enhance the oxidation of IBC solar cells

    Researchers from the International Solar Research Center at Konstanz and Delft University of Technology have discovered a method to pattern the back end of a cross finger rear contact battery, improving its efficiency by making certain parts of the solar cell thicker.Researchers have developed a new technology that enhances oxidation in selected areas by patterning the back or back of IBC solar ce...

    2024-02-20
    Voir la traduction
  • Tiny yet Powerful: How Lasers on Chips Change the Game Rules of Photonics

    Chip level ultrafast mode-locked laser based on nanophotonic lithium niobate.Researchers have created a compact mode-locked laser integrated into a nanophotonic platform, capable of generating high-power and ultrafast optical pulses. The breakthrough in miniaturization of MLL technology can significantly expand the application of photonics.Innovation in mode-locked laser technologyTo improve the t...

    2023-12-27
    Voir la traduction
  • The Future of Data Center Communication: Quantum Dot Semiconductor Comb Laser

    In the constantly evolving field of technology and data communication, researchers have made significant breakthroughs: developing a continuous wave O-band quantum dot semiconductor comb laser for wavelength division multiplexing optical interconnection. With its impressive performance characteristics, this development is expected to completely change the way we manage and transmit data, especiall...

    2024-02-21
    Voir la traduction
  • Artists transform paper into meticulous laser cutting designs

    In the past few years, paper artists have demonstrated the versatility of their common fiber materials. Some people manually cut or carve paper, while others combine traditional craftsmanship with digital design. Ibbini Studio is in this situation. Abu Dhabi artist Julia Ibni collaborated with computer scientist Stephen Noye to create sculptural paper works inspired by decorative patterns such as ...

    2024-01-23
    Voir la traduction
  • STL's new 160 micron fiber optic can meet emerging network and pipeline capacity requirements

    STL unveiled its new 160 micron fiber optic for the first time at the 2023 India Mobile Conference Trade Show.The company claims that its 160 micron fiber optic was conceptualized and developed at its Center of Excellence in Maharashtra, India, and its cable capacity is three times that of traditional 250 micron fiber optic. STL Company.After the launch of 160 micron fiber at the 2023 India Mobile...

    2023-11-01
    Voir la traduction