Français

China University of Science and Technology realizes millisecond level integrated quantum memory

879
2025-03-31 15:52:20
Voir la traduction

Recently, the team led by Academician Guo Guangcan from the University of Science and Technology of China has made significant progress in the field of integrated quantum storage. The research team led by Li Chuanfeng and Zhou Zongquan has improved the storage time of integrated quantum memory from 10 microseconds to milliseconds based on their original noiseless photon echo (NLPE) scheme, while successfully breaking through the efficiency of traditional fiber delay lines. The achievement was published on March 26th in the internationally renowned academic journal Science Progress.


As a core device for overcoming channel loss and building large-scale quantum networks, the large-scale application of optical quantum memory requires the integration of devices to achieve the goal of small size and low power consumption. Since 2011, various processes have been used internationally to prepare integrated quantum memories in rare earth doped crystals. However, due to the difficulty in filtering out noise and limited storage efficiency in integrated devices, existing devices can only achieve storage in atomic excited states, with a storage time of only 10 microseconds. The storage efficiency is far lower than the transmission efficiency of fiber delay lines, fundamentally limiting their practical application in remote quantum communication.

To solve this problem, the research group of Li Chuanfeng and Zhou Zongquan used femtosecond laser microfabrication technology to prepare circularly symmetrical concave cladding optical waveguides in europium doped yttrium silicate crystals, achieving noise filtering based on polarization degrees of freedom. Combined with the team's original NLPE quantum storage solution, the storage efficiency was greatly improved, thus achieving spin wave integrated quantum storage in the atomic ground state [National Science Review 12, nwae 161 (2024)].

Recently, the team integrated a coplanar waveguide on the surface of a crystal and achieved dynamic decoupling control of the spin transition of europium ion nuclei within the waveguide by applying a radio frequency magnetic field, thereby extending the spin wave quantum storage lifetime to the millisecond level. When the storage time of optical qubits reaches 1.021 milliseconds, their storage efficiency reaches 12.0 ± 0.5%, which far exceeds the transmission efficiency of the corresponding delay fiber delay line (only 0.01%), fully proving that integrated quantum storage devices are no longer functionally replaceable by fiber delay lines.


Figure 1. Schematic diagram of long-life integrated quantum storage experiment, illustrating the details of the incident end face of the memory.

 



Figure 2. Efficiency and lifetime performance of integrated quantum memory. The performance of fiber optic delay lines is represented by blue dashed lines, and the red pentagram represents the performance of this achievement.

This work has increased the lifespan of integrated quantum memory from 10 microseconds to milliseconds, achieving a breakthrough in storage efficiency beyond fiber delay lines for the first time, laying a solid foundation for the practical application of integrated quantum storage in long-range quantum networks. At the same time, this achievement demonstrates the enormous potential of NLPE solutions in solving the signal-to-noise ratio problem of long-lived quantum storage. The reviewer highly praised: 'This is a very important achievement in the field of integrated quantum memories', “this work makes a significant contribution to the development of integrated and long-duration quantum memories”( This work has made significant contributions to the development of integrated and long-lived quantum memories.

The first author of this paper is Liu Yuping, a doctoral student in the Key Laboratory of Quantum Information, Chinese Academy of Sciences. This work has been supported by the Science and Technology Innovation 2030 Major Project, the National Natural Science Foundation of China, Anhui Province and the Chinese Academy of Sciences. Zhou Zongquan was supported by outstanding members of the Youth Innovation Promotion Association of the Chinese Academy of Sciences.

Source: opticsky

Recommandations associées
  • Process practice of blue light semiconductor laser cladding copper on copper

    Laser Cladding, also known as laser cladding or laser cladding, is a method of adding cladding material to the surface of the substrate and using a high-energy density laser beam to melt it together with the thin layer on the surface of the substrate. It forms a metallurgical bonded additive cladding layer on the surface of the substrate, which can be used for surface strengthening and defect repa...

    2024-04-09
    Voir la traduction
  • Feasibility Study on Composite Manufacturing of Laser Powder Bed Melting and Cold Casting

    It is reported that researchers from the Technical University of Munich in Germany have reported a feasibility study on the composite manufacturing of EN AC-42000 alloy by combining laser powder bed melting and cold casting. The related research titled "Feasibility study on hybrid manufacturing combining laser based powder bed fusion and chill casting on the example of EN AC-42000 alloy" was publi...

    2024-06-06
    Voir la traduction
  • Seyond plans to land on the Hong Kong Stock Exchange in De SPAC mode

    Recently, TechStar Acquisition Corporation (07855. HK), a special purpose acquisition company, announced that Seyond, the successor company of the special purpose acquisition transaction, has submitted a new listing application. Seyond plans to land on the Hong Kong Stock Exchange under the De SPAC model. This means that Seyond is only one step away from going public through a backdoor listing. If...

    02-14
    Voir la traduction
  • It is expected that the global industrial laser system market size will reach 32.2 billion US dollars by 2028, and the Asia Pacific region's investment share in laser technology will continue to rise

    According to a latest overseas market research report, it is expected that the global industrial laser system market size will reach approximately 32.2 billion US dollars by 2028, with a compound annual growth rate of 8.3% from 2023 to 2028.The future prospects of the global industrial laser system market are broad, with opportunities in numerous fields such as semiconductors and electronics, auto...

    2023-08-10
    Voir la traduction
  • The United States has successfully developed a full 3D printed electric spray engine

    The fully 3D printed electric spray engine is suitable for small satellite in orbit maneuver, and its production cost is only a small part of that of traditional thrusters.Image source: Massachusetts Institute of Technology, USAThe Massachusetts Institute of Technology team recently demonstrated an electric spray engine made entirely of 3D printing technology, which can be propelled by emitting ...

    02-20
    Voir la traduction