Español

New LiDAR can 'see' faces from hundreds of meters away

1119
2025-02-11 15:58:55
Ver traducción

At a distance of 325 meters, the human eye may only be able to distinguish between a person's head and body, making it difficult to discern any other differences. But a research team including Heriot Watt University in the UK and Massachusetts Institute of Technology in the US has developed a new type of LiDAR scanner that can perform detailed analysis of a person's face from such a distance and create a 3D model of the face. This LiDAR can even capture ridges and indentations as small as 1 millimeter.

 



The relevant paper was published in the latest issue of the journal Optics. The team has designed a single photon time-of-flight lidar system. The system emits laser pulses, which reflect back to the device after colliding with objects. Lidar can determine the shape of an object by measuring the time required for each pulse to travel back and forth. The system is capable of obtaining high-resolution 3D images of objects or scenes up to a distance of 1 kilometer. Even in harsh environments or when objects are obscured by leaves or camouflage nets, it can achieve precise imaging, greatly improving security monitoring and remote sensing capabilities.

In order to achieve improved resolution, the team carefully calibrated and adjusted different components, such as the tiny parts inside the device used to guide laser pulses. In order to enable the device to distinguish individual photons, the team used a light detection sensor based on extremely fine superconducting wires, which is not commonly used in LiDAR. In addition, it is necessary to filter out sunlight that may enter the detector and reduce image quality. Tests have shown that the system captured a 3D image of a team member's face under 45 meter and 325 meter daylight conditions, distinguishing features as small as 1 millimeter and increasing depth resolution by approximately 10 times compared to their previous records. On a smaller scale, they captured images of Lego figurines from 32 meters away.

In another test, they filmed a communication tower 1 kilometer away. The excellent depth resolution of this system means that it is particularly suitable for imaging objects in cluttered backgrounds, which is a challenge for digital cameras. The team said that creating a detailed 3D map of the surrounding environment is also crucial for autonomous vehicle and even some robots.

Source: laserfair

Recomendaciones relacionadas
  • British scientists pioneered groundbreaking laser tools to help discover exoplanets

    Physicists from the University of Heriot and the University of Cambridge have developed an innovative laser system called Astrocomb, which can significantly improve the detection of exoplanets. This advanced tool can accurately measure the spectra emitted by nearby stars, which fluctuate due to the gravitational influence of orbiting planets. It is expected that this technology will enhance resear...

    2024-04-02
    Ver traducción
  • The researchers expect the EUV lithography market to grow from $9.4 billion in 2023 to $25.3 billion in 2028

    The researchers estimate the period from 2023 to 2028. EUV lithography will address the limitations of traditional optical lithography, which has reached its physical limits in terms of resolution. The shorter wavelength of EUV light allows for the creation of smaller features and tighter patterns on silicon wafers, enabling the manufacture of advanced microchips with greater transistor densities....

    2023-08-04
    Ver traducción
  • Massachusetts University team achieves new breakthrough in photolithography chip

    Recently, a research team from the University of Massachusetts Amherst has pioneered a new technology that uses laser irradiation on concentric superlenses on chips to generate holograms, thereby achieving precise alignment of 3D semiconductor chips.This research result, published in the journal Nature Communications, is expected to not only reduce the production cost of 2D semiconductor chips, bu...

    2024-11-06
    Ver traducción
  • Infinira launches an optical solution for 1.6 Tbps ICE-D data centers

    Infinira, an expert in optical network solutions, announced the launch of a high-speed data center optical transmission module based on single-chip indium phosphide (InP) photonic integrated circuit (PIC) technology. The company claims that the module will connect at a speed of 1.6 terabits per second (Tb/s), while reducing the cost and power consumption per bit.Yingfeilang stated that its data ce...

    2024-03-18
    Ver traducción
  • New method doubles and accelerates thermal tuning of optical chips, supporting two current and voltage regulation methods

    Silicon based quantum chip technology is one of the hot research directions in the field of integrated photonics. Thanks to compatibility with CMOS technology and silicon material characteristics, silicon-based integrated optical chips and devices have many advantages such as low cost, small size, low power consumption, and high integration, providing an ideal platform for large-scale optical comp...

    2024-04-02
    Ver traducción