Español

Nankai University makes progress in the field of free electron photon interactions

951
2025-02-11 15:45:36
Ver traducción

Recently, a research team led by Professor Cai Wei and Professor Xu Jingjun from the School of Physical Sciences at Nankai University has experimentally confirmed for the first time the generation of polaritons, also known as Smith Purcell radiation, at the two-dimensional scale, and further demonstrated the ability of free electrons to regulate two-dimensional Smith Purcell radiation. The research findings were published online in the internationally renowned journal Physical Review Letters under the title "Smith Purcell Radiation in Two Dimensions".

Electron photon interaction is one of the core topics in physics research. When free electrons bombard an optical structure or pass through its vicinity, it can generate electromagnetic radiation, a phenomenon commonly known as free electron radiation (or cathodoluminescence). The most famous example of free electron coherent radiation is Cherenkov radiation, which has significant applications in high-energy particle detection and was awarded the Nobel Prize in Physics in 1958. As an extension of Cherenkov radiation, Smith Purcell radiation can be generated when charged particles fly over periodic structured surfaces, providing a new solution for utilizing electrons to generate and manipulate light.

Over the past 70 years, the use of Smith Purcell radiation to generate light in three-dimensional space has attracted widespread attention. In recent years, with the rise of nanophotonics and two-dimensional materials, free electrons have injected new vitality into this field as efficient sources of photoexcitation, attracting attention from physicists, materials scientists, engineers, and other fields. As one of the important physical mechanisms for the generation of on-chip light sources, the generation and regulation of two-dimensional Smith Purcell radiation has become a critical issue that urgently needs to be addressed.

The figure shows a schematic diagram of two-dimensional Smith Purcell radiation generated by a free electron excitation periodic nanopore array

The research team observed two-dimensional Smith Purcell radiation through the interaction between free electrons and the designed metal nanopore array, and further demonstrated the active controllability of the two-dimensional Smith Purcell radiation direction by introducing the two-dimensional phased array radar effect. This innovative achievement not only deepens the understanding of the interaction between free electrons and light, but also has significant implications for constructing two-dimensional optical platforms that utilize electrons for generation and manipulation.

This work was first completed by Nankai University, with Sun Zhiguo, a doctoral student from Nankai University, as the first author, and Professors Cai Wei and Xu Jingjun from Nankai University as co corresponding authors. The relevant work has received funding from key research and development projects of the Ministry of Science and Technology of China, major projects of basic and applied basic research in Guangdong Province, and projects funded by the National Natural Science Foundation of China.

Source: opticsky

Recomendaciones relacionadas
  • The 2023 International Quantum Photonics Conference attracted over 600 attendees from 16 countries and regions

    On November 25th, Jinhua welcomed the 2023 International Quantum Photon Conference, which will lead the future of technology. This grand event is jointly hosted by the Chinese Society of Optical Engineering and the Jinhua Municipal Government, with joint support from the University of Science and Technology of China, Zhejiang Normal University, and the PhotoniX journal. The conference, with the th...

    2023-11-27
    Ver traducción
  • Germany's TRUMPF launches 50000 watt fiber laser

    TRUMPF will launch a new generation of efficient fiber lasers at the Munich Light Expo in Germany, which can meet the diverse welding needs of the entire industry, such as high-precision welding of electric vehicle batteries. Tom Rentschler, Product Manager of TRUMPF Fiber Laser, said, "The new generation TruFiber laser is the core engine of our production solutions. Through deep collaboration wit...

    06-20
    Ver traducción
  • Xi'an Institute of Optics and Fine Mechanics has made new progress in the field of metasurface nonlinear photonics

    Recently, the Research Group of Nonlinear Photonics Technology and Applications in the State Key Laboratory of Transient Optics and Photonics Technology of Xi'an Institute of Optics and Fine Mechanics has made important progress in the field of super surface nonlinear photonics. Relevant research results were published in the internationally famous journal Nanoscale Horizons. The first author of t...

    2024-09-27
    Ver traducción
  • Low noise! Switzerland develops a new type of laser

    According to foreign media reports, scientists from the Physics Research Institute and the Institute of Physics and the Center for Quantum Science and Engineering at the Swiss Federal Institute of Technology Lausanne (EPFL) in Lausanne, Switzerland have made a new progress in the field of excitation science, developing a smaller and quieter laser system than previous products.Small laser system (I...

    2024-07-03
    Ver traducción
  • 3D printing giant Materialise reorganizes

    Recently, the stock price of Materialise, a well-known company in the 3D printing industry, plummeted by 35% overnight. This news was like a heavy bomb, instantly causing a storm in the industry! What exactly happened to Materialise, which was originally developing steadily? Why has there been such a significant drop in stock prices? Today, let's delve into the reasons behind this.The truth behind...

    03-03
    Ver traducción