Español

Focused Energy purchases two world-class high-energy lasers

988
2024-12-25 14:45:23
Ver traducción

Recently, Focused Energy, a well-known foreign fusion energy startup, announced that it has officially signed an agreement to purchase two of the world's top high-energy lasers. These two large lasers will be deployed in the company's upcoming factory in the San Francisco Bay Area in the next two years.

Scott Mercer, CEO of Focused Energy, stated, "These lasers are currently the highest average power devices in the private sector, each capable of releasing over 1 kilojoule of energy towards targets, with a total investment of nearly $40 million.

The most advanced inertial restraint system currently available is located at the National Ignition Facility of the US government, which announced a breakthrough in "net gain" two years ago. There, physicists can conduct approximately 300 "shots" each year to study nuclear fusion. This is far below the demand of commercial nuclear fusion power plants. For example, the goal of 'concentrating energy' is to shoot 10 times per second.

The two new lasers from Focused Energy will be able to emit once per minute, although this is partly due to the active development of devices supporting them.

Doug Hammond, Vice President of the Laser Engineering Department of the company, further explained, "These subsystems are important demonstrations of the technology we need to build the final fusion pilot factory." He emphasized that the high-energy main amplifier is still under parallel development because such products do not yet exist in the market.

These lasers are not only a key part of the technology demonstration, but also fully customized and manufactured by Amplitude Lasers, a well-known ultrafast laser company in France. Each laser system covers an area of approximately 1600 square feet, equivalent to the size of a small residential building. Damien Buet, CEO of Amplitude Lasers, explained, "One of the reasons we haven't mass-produced such a large laser is that there isn't a significant demand in the market at the moment.

However, if Focused Energy can achieve its milestone goals, this situation may change. The commercial power plants designed by the company each require thousands of lasers. Buet pointed out, "The number of diodes required for a factory will far exceed the current global maximum production capacity. We need to expand the entire supply chain.

In order to ensure sufficient ignition energy and operational reliability of the power plant (even when some lasers require maintenance or replacement), the main challenge faced by Focused Energy is construction speed. Scott Mercer said, "Our target is 2035. The key is how quickly we can start mass producing lasers.

He added, "Even connecting a traditional power plant to the grid within 10 years is a highly challenging goal today
The kilojoule level laser of Amplitude Lasers is designed to test the physical properties required for effective direct drive compression of deuterium tritium fusion fuel targets. They will run at a high repetition rate of once every 60 seconds, enabling rapid design iterations.
This research was supported and funded by the German Federal Breakthrough Innovation Agency (SPRIND).

This three-year development plan will begin at the Amplitude Lasers Lisses facility near Paris in early 2025, building on the global momentum of inertial fusion energy triggered by the National Ignition Facility (NIF) fusion ignition breakthrough in December 2022. This initiative places the amplitude at the forefront of global development of clean energy solutions, utilizing cutting-edge laser technology to improve the parameters of inertial confinement fusion and advance the commitment to sustainable energy production.

We are seeking a nuclear fusion method called inertial confinement, in which several laser beams converge to compress fuel particles, causing their internal matter to fuse and release energy. This technology has demonstrated for the first time that net positive nuclear fusion power generation is possible, although there are still significant obstacles to overcome.

Source: OFweek

Recomendaciones relacionadas
  • Xi'an Institute of Optics and Fine Mechanics has made new progress in the field of metasurface nonlinear photonics

    Recently, the Research Group of Nonlinear Photonics Technology and Applications in the State Key Laboratory of Transient Optics and Photonics Technology of Xi'an Institute of Optics and Fine Mechanics has made important progress in the field of super surface nonlinear photonics. Relevant research results were published in the internationally famous journal Nanoscale Horizons. The first author of t...

    2024-09-27
    Ver traducción
  • The output power of high power femtosecond laser breaking through the key bottleneck of average power can reach the order of 100 watts

    High energy, high average power femtosecond laser due to the attosecond high order harmonic generation, precision processing and manufacturing, biomedical and national defense and other fields of extensive application needs, is the forefront of ultrafast super laser technology research in the past decade.Especially fiber laser due to stable and reliable operation characteristics, compact structure...

    2023-09-04
    Ver traducción
  • The new progress of deep ultraviolet laser technology is expected to change countless applications in science and industry

    Researchers have developed a 60 milliwatt solid-state DUV laser with a wavelength of 193 nanometers using LBO crystals, setting a new benchmark for efficiency values.In the fields of science and technology, utilizing coherent light sources in deep ultraviolet (DUV) regions is of great significance for various applications such as lithography, defect detection, metrology, and spectroscopy. Traditio...

    2024-04-10
    Ver traducción
  • Laser cladding method improves the surface performance of parts

    Laser cladding, also known as laser metal deposition, is a process of depositing one material onto another.When the laser beam scans the target surface, metal powder or wire flow is fed into the molten pool formed by the laser beam, thereby producing the required material coating.The laser cladding method improves the surface properties of the parts, such as wear resistance, and allows for the rep...

    2023-12-28
    Ver traducción
  • Quantum computing company secures $500 million in funding

    Quantum Computing Inc. (QCI), a startup based in the United States, recently opened a foundry for integrating photonics with thin-film lithium niobate (TFLN). The company announced that it has raised $500 million in total proceeds through a new private equity offering.It means that the Nasdaq-listed New Jersey startup, whose foundry is located within Arizona State University’s Research Park in Tem...

    09-30
    Ver traducción