Español

A new approach to 3D printing has been published in a Nature journal

596
2024-11-29 15:06:57
Ver traducción

In the last century, the improvement of mechanical properties of structural metals was mainly achieved through the creation of increasingly complex chemical compositions. The complexity of this ingredient increases costs, creates supply fragility, and makes recycling more complex.

As a relatively new metal processing technology, metal 3D printing provides the possibility to re-examine and simplify alloy composition, achieve alloy simplification, and enable simpler materials to be widely used.

On November 21, 2024, Professor Zhang Mingxing from the University of Queensland and Professor Christopher Hutchinson from Monash University in Australia published a research paper titled "High performance plain carbon steel obtained through 3D printing" in the top international journal Nature Communications. Tan Qiyi and Haiwei Chang were co first authors of the paper, and Professor Zhang Mingxing and Professor Christopher Hutchinson were co corresponding authors.

Zhang Mingxing, Professor at the School of Mechanical and Mining Engineering, University of Queensland, Australia. I graduated from Baotou Iron and Steel Institute with a bachelor's degree in 1984. I obtained my master's and doctoral degrees from Northwestern Polytechnical University in 1987 and 1990. From 1990 to 1993, I taught at Baotou Iron and Steel Institute. In 1997, I obtained my doctoral degree from the University of Queensland. In 2000, I obtained my master's degree from Queensland University of Technology. Since 2003, I have been teaching at the University of Queensland.
Professor Zhang Mingxing's research interests include additive manufacturing of metals and MAX phase materials, high entropy alloys, new alloy design through machine learning, and the application of crystallography in engineering materials, metal surface engineering, and grain refinement of cast metals.

As of November 2019, he has published approximately 210 academic papers with an H impact factor of 46 and over 6600 citations, with 117 i10 impact factors. His papers have been published in internationally renowned journals such as Progress in Materials Science, Acta Materialia, Scripta Materialia, Corrosion Science, Metallurgical and Materials Transactions A/B, Applied Physics Letters, Journal of Applied Crystallography, Journal of Alloys and Compounds, and Materials&Design.

Here, the author demonstrates that high-performance ordinary carbon steel can be produced through 3D printing. The tensile and impact properties of the author's 3D printed ordinary carbon steel are comparable to or even better than ultra-high strength alloy steels such as martensitic aging steel.

The inherent continuous micro zone melting and rapid solidification of 3D printing provide sufficient cooling, which can directly form martensite and/or bainite, enhance the strength of steel, while maintaining the uniformity of microstructure and properties, without size limitations or heat treatment deformation and cracking.

By manipulating 3D printing parameters, researchers can adjust the microstructure to control the properties of customized applications.
This provides a scalable approach to reduce alloy complexity without compromising mechanical properties, and highlights the opportunity for 3D printing to help drive alloy simplification.


Figure 1: Hardenability and Metal 3D Printing of Ordinary Carbon Steel AISI 1080


Figure 2: Microstructure analysis of 3D printed 1080 steel


Figure 3: Microstructure analysis of 3D printed 1040 steel


Figure 4: Mechanical properties


In summary, this paper investigates the manufacturing of high-performance simple carbon steel through 3D printing technology and finds that the tensile and impact properties of this carbon steel can be comparable to or even superior to ultra-high strength alloy steel after 3D printing.
The research results indicate that 3D printing technology can simplify alloy composition, reduce costs and supply chain vulnerability, while improving material recyclability, which is of great significance for promoting the sustainable development and simplification of materials. This technology can provide a high-performance material solution for manufacturing high-strength, complex shaped structural components without the need for complex alloying; Due to the customization of material properties through 3D printing, it provides opportunities for specific industries such as aerospace, automotive manufacturing, and construction to optimize component design and performance.

Source: Yangtze River Delta Laser Alliance

Recomendaciones relacionadas
  • New Progress: III-V Laser and Silicon Optics Technology Achieve Single Chip High Integration

    Recently, Scientific Photonics, a supplier of silicon photonic integrated circuits (PICs) headquartered in Grenoble, announced that it has successfully integrated III-V-DFB lasers and amplifiers with standard silicon photonic technology into the production process of Tower Semiconductor.By utilizing proprietary technology and standard silicon photonics, Scientific Photonics has achieved full inte...

    2024-03-01
    Ver traducción
  • Research Progress: Extreme Ultraviolet Photolithography

    Recently, the semiconductor industry has adopted Extreme Ultraviolet Lithography (EUVL) technology. This cutting-edge photolithography technology is used for the continuous miniaturization of semiconductor devices to comply with Moore's Law. Extreme ultraviolet lithography (EUVL) has become a key technology that utilizes shorter wavelengths to achieve nanoscale feature sizes with higher accuracy a...

    2024-12-09
    Ver traducción
  • Launching the world's strongest laser at a cost of 320 million euros

    Beijing, April 1st (Reporter Liu Xia) - The world's most powerful laser has been activated recently. On March 31st, the Physicist Organization Network reported that the system can enable laser pulses to reach a peak of 10 terawatts (1 terawatt=100 terawatts=1015 watts) within 1 femtosecond (1000 trillions of a second), which is expected to promote revolutionary progress in multiple fi...

    2024-04-03
    Ver traducción
  • Yawei Group and Zhonggang Metal signed a complete set of sheet metal laser processing equipment to assist in the development of curtain wall materials industry

    Recently, Yawei Group signed a complete set of sheet metal laser processing equipment with Hubei Zhonggang Metal Xianning Second Production Base, adding bricks and tiles to the takeoff of Zhonggang Metal Business. After full production, the annual production of various aluminum metal plates will exceed 6 million square meters, and Zhonggang Metal will usher in another leap forward development!Zhon...

    2023-11-03
    Ver traducción
  • 国内自主研发首套碳化硅晶锭激光剥离设备投产

           近日,从江苏通用半导体有限公司传来消息,由该公司自主研发的国内首套的8英寸碳化硅晶锭激光全自动剥离设备正式交付碳化硅衬底生产领域头部企业广州南砂晶圆半导体技术有限公司,并投入生产。 图:8英寸SiC晶锭激光全自动剥离设备       该设备可实现6英寸和8英寸碳化硅晶锭的全自动分片,包含晶锭上料、晶锭研磨、激光切割、晶片分离和晶片收集,一举填补了国内碳化硅晶锭激光剥离设备领域研发、制造的市场空白,突破了国外的技术封锁,将极大地提升我国碳化硅芯片产业的自主化、产业化水平。       该设备年可剥离碳化硅衬底20000片,实现良率95%以上,与传统的线切割工艺相比,大幅降低了产品损耗,而设备售价仅仅是国外同类产品的1/3。       近年来,碳化硅功率器件在大功率半导体市场中所占的份额不断提高,并被广泛应用于新能源汽车、城市轨道交通、风力发电、高速移动、物联网等一系列领域...

    2024-08-26
    Ver traducción