Español

A US research team has developed a new type of photonic memory computing device

812
2024-10-24 11:36:03
Ver traducción

Recently, a research team from the University of California, Santa Barbara has successfully developed a new type of photonic memory computing device that integrates non reciprocal magneto-optical technology. This device achieves high-speed, high-energy efficiency, and ultra-high durability photon computing by utilizing the non reciprocal phase shift phenomenon. The research findings, titled "Integrated non recurrent magneto optics with ultra high endurance for photonic in memory computing," were published in Nature Photonics.

Photon computing has become one of the important directions for the future development of artificial intelligence and machine learning due to its advantages of high speed and low energy consumption. However, the current photon processing architecture faces challenges such as slow storage array update speed, high energy consumption, and insufficient durability. The non reciprocal magneto-optical technology proposed by the research team has successfully solved these bottlenecks by integrating cerium doped yttrium iron garnet with silicon micro ring resonators. By utilizing the non reciprocal phase shift properties of this material, researchers have demonstrated fast programming (1 nanosecond), low energy consumption (143 femjoules per bit), and excellent durability (programmable 2.4 billion cycles) of photonic memory cells.

 


Figure a. Schematic diagram of computing architecture and unit devices; d. Schematic diagram of memory unit.


The core of this technology is to encode optical weights through the non reciprocal phase shift effect generated by magneto-optical materials in micro ring resonators. Unlike existing photon weights based on thermal or plasmonic dispersion effects, non reciprocal magneto-optical weights not only improve programming speed, but also significantly enhance the device's fatigue resistance and multi-level storage capability. The research team also pointed out that the photon computing platform using this new architecture is expected to provide higher computational efficiency for matrix vector multiplication (MVM) in artificial intelligence.

The photon memory unit demonstrated in this study can update weights at a very high programming speed with high-speed response and low energy consumption, greatly reducing the overall energy burden of the system. Especially in applications such as deep learning that require large-scale computing, this technology can significantly reduce the computational bottleneck of traditional electrical architectures through non-volatile, multi bit storage, further promoting the development of future computing architectures towards more efficient and green directions.

Based on the future development prospects of this technology, researchers believe that by further optimizing the integration of materials, such as utilizing spin orbit torque or spin torque transfer effects, it is possible to achieve higher switching efficiency. In addition, with the advancement of single-chip integration technology between cerium doped yttrium iron garnet and silicon photonic devices, this technology has enormous potential for future applications in fields such as photon computing and magnetic storage.

Source: Opticsky

Recomendaciones relacionadas
  • Advanced OPA enhances the energy of attosecond imaging ultra short pulses

    The attosecond level ultra short laser pulse provides a powerful method for detecting and imaging ultra short processes, such as the motion of electrons in atoms and molecules.Although ultra short laser pulses can be generated, generating ultra short and high-energy pulses is a continuous challenge. In order to expand the photon energy, photon flux, and continuous bandwidth of isolated attosecond ...

    2024-05-11
    Ver traducción
  • Another blockbuster acquisition! The two equipment makers announced a merger to focus on laser construction

    Recently, RDO equipment announced the completion of its acquisition of Rocky Mountain Transit&laser, expanding the construction technology solutions, services and expertise of John Deere construction and Wirtgen group in eight stores in Idaho, Wyoming and Utah, RDO acquired the stores in December 2023.Adam Gilbertson, senior vice president of field technology and innovation at RDO, said the ac...

    2024-05-31
    Ver traducción
  • Using high-speed scanning remelting technology to achieve AlSi10Mg laser powder bed fusion with excellent strength and plasticity properties

    The development of additive manufacturing (AM) has profoundly changed the manufacturing industry, and this technology has been applied in fields such as food, medicine, automotive, and electronic components. Especially in the aerospace field, where extremely lightweight and high-strength (~500mpa) components are required, aluminum alloy additive manufacturing is considered a very promising solutio...

    2024-10-08
    Ver traducción
  • The University of Stuttgart has simplified the detection of nanoplastics

    Detecting the presence of nanoscale plastic particles in the environment has become a topic of concern for industrial societies worldwide, not least since particles of that size can evade the body's blood-brain barrier and damage metabolic processes.Optical technologies have been at the forefront of these monitoring efforts. Recent examples have included the use of stimulated Raman scattering to s...

    09-15
    Ver traducción
  • The new chip opens the door to artificial intelligence computing at the speed of light

    Engineers at the University of Pennsylvania have developed a new chip that uses light waves instead of electricity to perform complex mathematical operations necessary for training artificial intelligence. This chip has the potential to fundamentally accelerate the processing speed of computers while reducing their energy consumption.The design of a silicon photonic chip was the first to combine t...

    2024-02-18
    Ver traducción