Español

Overview of ultrafast laser micro nano manufacturing technology: material processing, surface/interface control, and device manufacturing

171
2024-08-06 14:36:08
Ver traducción

Researchers from Tsinghua University have summarized the research on ultrafast laser micro nano manufacturing technology, including material processing, surface/interface control, and device manufacturing. The relevant review titled "A Review of Ultrafast Laser Micro/Nano Fabric: Material Processing, Surface/Interface Control, and Device Fabric" was published in Nano Research.

Ultra fast laser processing technology provides a wide range of application opportunities in micro nano manufacturing, nanotechnology, biotechnology, energy science, photonics, and other fields due to its controllable processing accuracy, diverse processing capabilities, and extensive material adaptability. The processing capability and application of ultrafast lasers still need further exploration. In the field of material processing, controlling the atomic scale structure of nanomaterials is challenging. There are complex effects in ultrafast laser surface/interface processing, making it difficult to modulate the nanostructures and properties of the surface/interface as needed. In the process of ultrafast laser manufacturing of micro functional devices, the processing capability urgently needs to be improved. Here, researchers reviewed the research progress of ultrafast laser micro nano manufacturing in areas such as material processing, surface/interface control, and micro functional device manufacturing. Several useful ultrafast laser processing methods and applications in these fields were introduced. Ultra fast laser processing technology has various processing effects and capabilities, and has shown application value in multiple fields from science to industry.

Figure 1 Overview of ultrafast laser micro nano processing structure schematic diagram


Figure 2 Reshaping of Metal Nanomaterials Induced by Ultrafast Laser


Figure 3 Ultrafast laser-induced ablation of metal nanomaterials


Figure 4 Ultra fast laser plasma nanomachining of multifunctional structures with photoresponsive properties


Figure 5 Formation of surface dislocation layer under femtosecond laser irradiation


Figure 6 Laser Induced Coffee Ring Structure for Color Printing


Figure 7 Strong metal carrier interaction induced by ultrafast laser


Figure 8 Ultrafast laser induces bubble enhanced fluorescence in dye solution


Figure 9 Optical Metasurfaces Prepared by Near Field Enhanced Ultrafast Laser Processing Method


Figure 10 Using a multi beam ultrafast laser to fabricate photonic crystals and subwavelength gratings


Figure 11 Preparation of Nanogap Graphene Supercapacitors by Ultrafast Laser Bessel Beam Processing


Figure 12 Ultrafast Laser Induced Carbonization from Carbonation Points


Figure 13 Preparation of hybrid supercapacitors using MoCl5 assisted carbonization method based on ultrafast laser

This article reviews the research progress of ultrafast laser micro nano processing technology in material processing, surface/interface control, and functional device manufacturing. These research results demonstrate the extensive material processing capabilities of ultrafast lasers, from altering the internal atomic structure of nanomaterials to manipulating the properties of material surfaces/interfaces. By adjusting the energy deposition of ultrafast laser processing, different processing effects on nanomaterials can be achieved, including reshaping, ablation, and interconnection. Ultrafast lasers provide an effective method to control the properties of material surfaces/interfaces, thereby achieving the construction of surface structures, impact strengthening, and strong metal carrier interactions. In addition, this technology can also produce micro functional devices, including photonic crystal devices, optical components, and electronic devices. These advances demonstrate the potential of ultrafast laser processing in both scientific and industrial fields. Ultrafast laser processing technology is still rapidly developing and will play a more important role in micro nano manufacturing in the future, bringing changes to multiple application fields.

Source: Yangtze River Delta Laser Alliance

Recomendaciones relacionadas
  • Hyperspectral imaging technology: a comprehensive guide from principles to applications

    Hyperspectral imaging technology is a highly anticipated innovation in the field of science and engineering today. It not only integrates spectroscopy and imaging technology, but also has wide applications in various industries and research fields. This article will delve into the basic principles, working mechanisms, and applications of hyperspectral imaging in different fields.Introduction to hy...

    2024-04-16
    Ver traducción
  • Export of Pentium Laser Automation Production Line to Japan

    Recently, several large trucks from the Wenzhou factory of Pentium Laser were lined up and ready to go. The high-power and high-speed laser cutting automation production line developed and produced by Pentium Laser has been strictly inspected and accepted by Japanese customers for 15 days and 24 hours of uninterrupted operation. Today, it was loaded and sent to Japan. This laser cutting automati...

    2024-12-06
    Ver traducción
  • The Innovation Road of Laser Welding Automation Production Line for New Energy Vehicle Motor stators

    With the increasing global attention to environmental protection and sustainability, new energy vehicles have become an important trend in the automotive industry. In this context, the production method of the core component of new energy vehicles - the motor stator - has also undergone profound changes. Welding, as a key manufacturing process, has brought disruptive innovation to the manufacturin...

    2024-02-28
    Ver traducción
  • Implementing and studying non Hermitian topological physics using mode-locked lasers

    A mode-locked laser is an advanced laser that can generate very short optical pulses with durations ranging from femtoseconds to picoseconds. These lasers are widely used for studying ultrafast and nonlinear optical phenomena, but they have also been proven to be applicable to various technological applications.Researchers at the California Institute of Technology have recently been exploring the ...

    2024-03-27
    Ver traducción
  • SuperLight Photonics receives strategic investment from Hamamatsu Ventures

    Recently, SuperLight Photonics, a leading laser technology manufacturer, announced that it has received strategic investment from global venture capital firm Hamamatsu Ventures, which will be used to promote long-term innovation and collaborative development of its laser technology. Hamamatsu Ventures focuses on investing in photonics companies that address future demand expectations, particular...

    2024-10-22
    Ver traducción