Español

Halo Industries raises 580 million yuan to achieve significant breakthrough in SiC laser processing field

369
2024-07-18 15:13:25
Ver traducción

Recently, Halo Industries, an innovative technology company based in California, announced that it has successfully raised $80 million in Series B venture capital, marking a significant breakthrough in its use of laser technology to revolutionize the production of silicon carbide (SiC) semiconductor wafer substrates.

This financing is led by the US Innovation Technology Fund (USIT) and involves heavyweight investment institutions such as 8VC and SAIC, aiming to accelerate the commercialization process of technology and establish a new "gold standard" for Halo in SiC substrate production.

This startup separated from a research laboratory at Stanford University in 2014 to develop tools and technologies for manufacturing thin and flexible silicon for solar and semiconductor applications. The company is located in Santa Clara and has challenged the industry status quo in recent years with its disruptive multi-step process, aiming to significantly reduce wafer costs and lay a solid foundation for SiC power electronic devices in the electric vehicle (EV) and renewable energy fields.

Halo Industries has significantly increased the production and quality of SiC wafers through its manufacturing innovation, accelerating growth opportunities for multiple downstream applications including electric vehicles (EVs), electric vehicle charging stations, solar/wind electronics, grid infrastructure, industrial motor drives, HVAC, power rail/transportation, and aerospace/defense.

Halo Industries emphasizes that its innovative laser cutting method demonstrates significant advantages over traditional sawing techniques in reducing wafer defects and lowering energy and water consumption. SiC materials are considered an ideal choice for high-efficiency power electronic devices due to their wider electronic bandgap characteristics, and Halo's technology is the key to unlocking this potential.

Through our laser slicing tool, Halo has not only increased the yield and quality of SiC, but also greatly reduced waste and production costs, injecting strong momentum into the rapid development of clean energy technology, "said Andrei Iancu, CEO of the company.

With the surge in demand for high-efficiency power electronics products in the market, Halo's laser manufacturing tools and SiC production strategy are seen as a major "weapon" to promote sustainable electrification.

Halo has demonstrated strong production capacity: currently producing 1000 wafers per month and plans to increase it to 24000 wafers by the end of this year, with growth potential perfectly aligned with industry demand.

According to analyst reports, the global SiC wafer production in 2019 was approximately 100 million pieces, indicating a huge growth potential for this market. Halo's technological innovation not only increases the output of each wafer, but also effectively avoids the wafer bending and warping problems in traditional methods, further consolidating its market leading position.

The success of the California Energy Commission project has validated the outstanding performance of Halo technology, its zero material loss potential, and efficient mass production, indicating a significant reduction in the cost of conductive SiC substrates, bringing unprecedented cost-effectiveness advantages to advanced power electronics products. Halo is actively expanding its production capacity to meet the growing market demand and continues to drive the semiconductor industry towards a cleaner and more efficient direction.

This financing not only lays a solid financial foundation for Halo's future development, but also provides unlimited possibilities for its technological innovation and market expansion.

Halo Industries is leading a new era in SiC wafer production with its unique laser technology and steadfast market vision, contributing significantly to the global clean energy revolution.

Source: OFweek

Recomendaciones relacionadas
  • Laser based ultra precision gas measurement technology

    Laser gas analysis can achieve high sensitivity and selectivity in gas detection. The multi-component capability and wide dynamic range of this detection method help analyze gas mixtures with a wide concentration range. Due to the fact that this method does not require sample preparation or pre concentration, it is easy to adopt in the laboratory or industry.Gas analysis is crucial for determining...

    2024-01-03
    Ver traducción
  • New technology can efficiently heal cracks in nickel based high-temperature alloys manufactured by laser additive manufacturing

    Recently, Professor Zhu Qiang's team from the Department of Mechanical and Energy Engineering at Southern University of Science and Technology published their latest research findings in the Journal of Materials Science. The research team has proposed a new process for liquid induced healing (LIH) laser additive manufacturing of cracks. By controlling micro remelting at grain boundaries to introdu...

    2024-03-15
    Ver traducción
  • Southeast University makes new progress in quantum efficiency research of van der Waals light-emitting diodes

    Recently, Professor Ni Zhenhua from the School of Electronic Science and Engineering at Southeast University, Professor Lv Junpeng from the School of Physics, Professor Liu Hongwei from the School of Physical Science and Technology at Nanjing Normal University, and Professor Zhou Peng from the School of Microelectronics at Fudan University collaborated to propose a van der Waals light-emitting dio...

    2024-10-28
    Ver traducción
  • 43 seconds! Completion of laser welding of a new energy vehicle body

    March 8, in the three sessions of the 14th National People's Congress, the second “representative channel” focused on interviews, the National People's Congress, the party secretary of HGTECH Science and Technology, Chairman of the Board of Directors Ma Xinqiang, said in response to a reporter's question, in order to crack the “strangle  “technical problems, HGTECH over the years in the field of h...

    03-11
    Ver traducción
  • Probe organization of photoacoustic devices using low-cost laser diodes

    Photoacoustic technology provides a non-invasive method for detecting biological tissues, but its clinical application is limited, partly due to the large volume and high cost of laser sources. A compact PA sensing instrument powered by laser diodes for biomedical tissue diagnosis can provide clinical doctors with a practical and effective tool for evaluating breast diseases.By providing a cost-ef...

    2024-03-06
    Ver traducción