Español

New two-photon aggregation technology significantly reduces the cost of femtosecond laser 3D printing

862
2024-07-05 14:17:54
Ver traducción

Scientists at Purdue University in the United States have developed a new type of two-photon polymerization technology. This technology cleverly combines two lasers and utilizes 3D printing technology to print complex high-resolution 3D structures while reducing femtosecond laser power by 50%. It helps to reduce the cost of high-resolution 3D printing technology, thereby further expanding its application range. The relevant research paper was published in the latest issue of the journal Optics Letters.

High resolution 3D printing structure. Image source: Optical Express magazine

Two photon polymerization is an advanced additive manufacturing technology that relies on the precise 3D printing of materials using femtosecond lasers. Despite its outstanding performance in manufacturing high-resolution microstructures, the high cost has become a roadblock to its widespread application.

In view of this, the research team creatively combined relatively low-cost lasers that emit visible light with femtosecond lasers that emit infrared pulses, reducing femtosecond laser power by 50%. This innovative method effectively reduces the printing cost of individual parts.

The new method combines the single photon absorption of 532 nanometer nanosecond laser with the two-photon absorption method of 800 nanometer femtosecond laser. To achieve the optimal balance between two types of laser printing, the team also constructed a new mathematical model to gain a deeper understanding of the photochemical processes involved and accurately calculate the synergistic effects of two-photon and single photon excitation processes, ensuring that ideal printing results can still be achieved at lower femtosecond laser power.
The experimental results show that for 2D structures, the new method reduces the required power of femtosecond lasers by 80%; For 3D structures, it is reduced by about 50%.

The team stated that high-resolution 3D printing technology has broad application prospects, including but not limited to the manufacturing of 3D electronic devices, the development of micro robots in the biomedical field, and the construction of tissue engineering 3D structures or scaffolds.

Femtosecond laser 3D printing, in short, involves the occurrence of photochemical reactions in a very small volume to construct fine three-dimensional structures. This is a very cutting-edge technology in the field of modern additive manufacturing, but it has limitations in terms of printing speed and power budget. Now, the team has printed high-resolution structures while reducing power by half, overcoming cost barriers. The most valuable thing is that this new technology can easily integrate into existing femtosecond laser 3D printing systems, enabling faster application in various fields such as biomedical, micro robots, and micro optical devices.

Source: Yangtze River Delta Laser Alliance

Recomendaciones relacionadas
  • AWOL Vision will showcase cutting-edge laser projectors and award-winning innovations at CEDIA 2023

    AWOL Vision has announced that it will be showcasing the latest innovations in home entertainment at this year's CEDIA Expo in Denver, Colorado from September 7-9.At the show, AWOL Vision will debut the new LVV-3000 Pro and LVV-3500 Pro laser projectors with Dolby Vision and Control4 integration, and will showcase the latest Vanish TV, The TV recently received the prestigious "IFA 2023 Best of the...

    2023-09-08
    Ver traducción
  • New progress in research on laser cleaning and improving the damage threshold of fused quartz components at Shanghai Optics and Machinery Institute

    Recently, the research team of the High Power Laser Element Technology and Engineering Department of the Shanghai Institute of Optics and Mechanics, Chinese Academy of Sciences, has made new progress in the study of improving the damage threshold of fused quartz elements through laser cleaning. The study proposes for the first time the use of microsecond pulse CO2 laser cleaning to enhance the dam...

    2024-07-08
    Ver traducción
  • Laser cladding method improves the surface performance of parts

    Laser cladding, also known as laser metal deposition, is a process of depositing one material onto another.When the laser beam scans the target surface, metal powder or wire flow is fed into the molten pool formed by the laser beam, thereby producing the required material coating.The laser cladding method improves the surface properties of the parts, such as wear resistance, and allows for the rep...

    2023-12-28
    Ver traducción
  • LASER World of PHOTONICS CHINA- 20th Anniversary Celebration Coming Soon!

    The Annual Grand Event for the Laser, Optics, and Optoelectronics Industry in AsiaLASER World of PHOTONICS CHINA20th Anniversary Celebration Coming Soon!📅 March 11-13📍 Shanghai New International Expo Centre (SNIEC), Entrance Hall 3🏢 Halls: N1-N5, E7-E4💡 1,400+ exhibitors across over 100,000 square meters Visitor Opening HoursDay 1: March 11 (Tuesday) 9:00 - 17:00Day 2: March 12 (Wednesday)...

    03-10
    Ver traducción
  • Monport Laser's grand anniversary event ignited a boom in laser engraving industry

    Monport Laser, a leading manufacturer of laser engraving machines, is pleased to announce an exciting anniversary on its website. The event will mark the anniversary of Monport Laser and offer customers a range of exclusive offers and promotions. The event will highlight Monport Laser's commitment to innovation, customer satisfaction and the magic of laser engraving.The Monport Laser Anniversary...

    2023-08-04
    Ver traducción