Español

Significant progress made in 808nm high-power semiconductor laser chips

329
2024-06-14 14:41:24
Ver traducción

The R&D team of Xi'an Lixin Optoelectronics Technology Co., Ltd. (hereinafter referred to as "Lixin Optoelectronics") has made significant progress in 808nm high-power semiconductor laser chips through continuous technological breakthroughs.

808nm semiconductor laser, as an ideal and efficient solid-state laser pump source, plays an important role in advanced manufacturing, mechanical processing, medical beauty, laser display, scientific research, aerospace and other fields. With the increasing demand for efficient laser solutions in the market, high-power and high-efficiency laser chips have become a key factor driving industry development. The company's R&D team has improved the slope efficiency, high-temperature characteristics, and output power of 808nm high-power semiconductor laser chips through structural upgrades and epitaxial technology optimization; By optimizing the cavity surface coating technology, the damage threshold COMD of the chip cavity surface is increased, thereby significantly improving the reliability of the chip.

The test results show that the high-power 808nm COS laser chip packaged in vertical core optoelectronic packaging has an output power of up to 81W and a maximum photoelectric conversion efficiency (PCE) of 57% at QCW 86A, which reflects the excellent high-temperature characteristics, high damage threshold, and high reliability of the product.

The realization of this innovative achievement highlights the profound technological accumulation and outstanding innovative strength of Lixin Optoelectronics in the field of high-power semiconductor laser chips. It not only enhances the company's competitive position in the domestic market, but also promotes the advancement of solid-state laser technology using such high-power laser chips as pump sources.

Source: Lixin Optoelectronics

Recomendaciones relacionadas
  • TroGroup announces acquisition of Luxinar Ltd.

    Recently, TroGroup, a family owned laser giant operating globally in Austria, announced a major strategic move - the successful acquisition of Luxinar Ltd., a leading laser source manufacturer based in Hull, UK. This move marks a new level of TroGroup's technological leadership in the field of laser sources.Through this acquisition, Luxinar, with its approximately 200 elite team and over 25 years ...

    2024-08-03
    Ver traducción
  • Fiber laser array for single pixel imaging is expected to achieve remote detection

    Single pixel imaging (SPI) is a novel computational imaging technique that has been widely studied in recent years. This technology only uses single pixel detectors without spatial resolution to obtain spatial information of targets.It has unique advantages and compensates for the shortcomings of traditional imaging technologies based on array detectors, such as relatively immature or expensive ar...

    2024-05-15
    Ver traducción
  • Smaller laser facilities use new methods to break records before proton acceleration

    The Helmholtz Dresden Rosendorf Center (HZDR) has made significant progress in laser plasma acceleration. By adopting innovative methods, the research team successfully surpassed previous proton acceleration records significantly.They obtained energy for the first time that can only be achieved in larger facilities so far. As reported by the research team in the journal Nature Physics, promising a...

    2024-05-15
    Ver traducción
  • China University of Science and Technology has made progress in the study of the regulatory mechanism of thermally induced delayed fluorescence

    Recently, Professor Zhou Meng's research group at the University of Science and Technology of China collaborated with Professor Fu Hongbing's team at the Capital Normal University to reveal the mechanism by which aggregation effects regulate the luminescent properties of thermally delayed fluorescent materials. The research findings, titled "Aggregation Enhanced Thermally Activated Delayed Fluoros...

    2024-06-28
    Ver traducción
  • Xi'an Institute of Optics and Fine Mechanics has made progress in the field of integrated microcavity optical frequency comb

    Recently, researcher Zhang Wenfu from the National Key Laboratory of Ultrafast Optical Science and Technology of Xi'an Institute of Optics and Mechanics, researcher Chen Wei from the academician team of Guo Guangcan from the Key Laboratory of Quantum Information of the Chinese Academy of Sciences of the University of Science and Technology of China, and professor Yang Jun from the School of Intell...

    02-19
    Ver traducción