Español

Korean POSTECH develops stretchable color adjustable photonic devices

501
2024-06-11 15:34:09
Ver traducción

Liquid crystal elastomers are expected to be applied in displays, sensors, smart devices, and wearable devices.
A team from POSTECH University in South Korea, led by Professor Su Seok Choi and Professor Seungmin Nam, has developed a new type of stretchable photonic device that can control the wavelength of light in various directions.

This work was carried out by the Department of Electrical Engineering at the university and described in the journal Nature, Light: Science and Applications.


Structural colors are generated through the interaction between light and microscopic nanostructures, and do not rely on traditional color mixing methods to produce bright hues. Traditional displays and image sensors combine three primary colors (red, green, and blue), while structured color technology utilizes the inherent wavelength of light to produce more vivid and diverse color displays.

POSTECH's announcement states that this innovative method is being recognized as a promising technology in the nanooptics and photonics industries.

"Free adjustment of solid colors"
Traditional color mixing techniques using dyes or luminescent materials are limited to passive and fixed color representations. In contrast, adjustable color technology dynamically controls the nanostructure corresponding to a specific wavelength of light, allowing for free adjustment of pure colors.

Previous research was mainly limited to unidirectional color adjustment, typically converting colors from red to blue. Reversing this transition from blue to longer wavelength red has always been a major challenge.

The current technology only allows for adjustments to shorter wavelengths, making it difficult to achieve diverse color representations in the ideal free wavelength direction. Therefore, a new type of optical device capable of bidirectional and omnidirectional wavelength adjustment is needed to maximize the utilization of wavelength control technology.

Professor Cui's team solved these challenges by combining chiral * 1 liquid crystal * 2 elastomers (CLCE) with dielectric elastomer actuators (DEA). CLCE is a flexible material that can change the color of the structure, while DEAs cause flexible deformation of the dielectric in response to electrical stimulation.

The team optimized the actuator structure to combine with CLCE, enabling it to expand and contract, and developed a stretchable device with strong adaptability. The device can freely adjust the wavelength position in the visible spectrum, from shorter to longer wavelengths, and vice versa.

In their experiment, researchers demonstrated that their CLCE based photonic devices can use electrical stimulation to control the structural colors over a wide range of visible light wavelengths (from blue at 450nm to red at 650nm). Compared to previous technologies, this represents significant progress, which were limited to unidirectional wavelength tuning.

This study not only lays the foundation for advanced photonic devices, but also highlights their potential in various industrial applications.
Professor Cui commented, "This technology can be applied to displays, optical sensors, optical camouflage, direct optical simulation encryption, biomimetic sensors and smart wearable devices, as well as many other applications involving broadband electromagnetic waves beyond the light, color, and visible light bands. Our goal is to expand its application scope through continuous research.".

This study was supported by the Samsung Research and Incubation Center of Samsung Electronics and the Technology Innovation Program (Flexible Intelligent Variable Information Display) of the Korea Industrial Technology Planning and Evaluation Institute.

Source: Laser Net

Recomendaciones relacionadas
  • Laser beam combined with metal foam to produce the brightest X-ray

    According to the Physicists' Network, scientists from Lawrence Livermore National Laboratory (LLNL) in the United States ingeniously combined the high-power laser emitted by the National Ignition Facility (NIF) with the ultra light metal foam to create the brightest X-ray ever. These ultra bright high-energy X-rays play an important role in many research fields, including imaging of extremely dens...

    01-18
    Ver traducción
  • Hexconn announces the launch of a new modular 3D laser scanner designed specifically for large-scale surface inspection

    The new Absolute Scanner AS1-XL adopts the same "Shine" technology as its flagship product Absolute Scanner AS1, allowing it to collect clean 3D data from the most challenging surface types at a very high speed.The new scanner has a wider scanning line and is designed specifically for inspecting large surfaces and deep cavities in inspection applications such as aerospace panels, ship propellers, ...

    2023-09-27
    Ver traducción
  • Researchers enhance the signal of perovskite nanosheets

    In the field of optoelectronics, researchers from Busan National University in South Korea and the University of Oxford in the UK have successfully improved the signal amplification ability of CsPbBr3 perovskite nanosheets through innovative patterned waveguide methods, bringing new possibilities for the future of optoelectronics. This breakthrough not only has potential applications in fields suc...

    2024-02-22
    Ver traducción
  • Filatek: Leading the Development of Laser, Shining "Additive Prince"

    In recent years, the field of laser technology has received widespread attention from the outside world. At that time, the Munich Shanghai Electronic Production Equipment Exhibition was successfully held in Shanghai, and Suzhou Feilaitek Laser Technology Co., Ltd. (hereinafter referred to as "Feilaitek"), a leading enterprise in the field of industrial laser 3D dynamic focusing systems, appeared a...

    2024-04-12
    Ver traducción
  • Researchers have manufactured chip based optical resonators that can operate in the ultraviolet (UV) and visible light regions of the spectrum

    Figure: Researchers have created a chip based ring resonator that operates in the ultraviolet and visible light ranges and exhibits record low UV loss. The resonator (small circle in the middle) is displayed as blue light.Researchers have created chip based photonic resonators that can operate in the ultraviolet (UV) and visible regions of the spectrum and exhibit record low UV loss. The ne...

    2023-10-06
    Ver traducción