Español

Korean POSTECH develops stretchable color adjustable photonic devices

215
2024-06-11 15:34:09
Ver traducción

Liquid crystal elastomers are expected to be applied in displays, sensors, smart devices, and wearable devices.
A team from POSTECH University in South Korea, led by Professor Su Seok Choi and Professor Seungmin Nam, has developed a new type of stretchable photonic device that can control the wavelength of light in various directions.

This work was carried out by the Department of Electrical Engineering at the university and described in the journal Nature, Light: Science and Applications.


Structural colors are generated through the interaction between light and microscopic nanostructures, and do not rely on traditional color mixing methods to produce bright hues. Traditional displays and image sensors combine three primary colors (red, green, and blue), while structured color technology utilizes the inherent wavelength of light to produce more vivid and diverse color displays.

POSTECH's announcement states that this innovative method is being recognized as a promising technology in the nanooptics and photonics industries.

"Free adjustment of solid colors"
Traditional color mixing techniques using dyes or luminescent materials are limited to passive and fixed color representations. In contrast, adjustable color technology dynamically controls the nanostructure corresponding to a specific wavelength of light, allowing for free adjustment of pure colors.

Previous research was mainly limited to unidirectional color adjustment, typically converting colors from red to blue. Reversing this transition from blue to longer wavelength red has always been a major challenge.

The current technology only allows for adjustments to shorter wavelengths, making it difficult to achieve diverse color representations in the ideal free wavelength direction. Therefore, a new type of optical device capable of bidirectional and omnidirectional wavelength adjustment is needed to maximize the utilization of wavelength control technology.

Professor Cui's team solved these challenges by combining chiral * 1 liquid crystal * 2 elastomers (CLCE) with dielectric elastomer actuators (DEA). CLCE is a flexible material that can change the color of the structure, while DEAs cause flexible deformation of the dielectric in response to electrical stimulation.

The team optimized the actuator structure to combine with CLCE, enabling it to expand and contract, and developed a stretchable device with strong adaptability. The device can freely adjust the wavelength position in the visible spectrum, from shorter to longer wavelengths, and vice versa.

In their experiment, researchers demonstrated that their CLCE based photonic devices can use electrical stimulation to control the structural colors over a wide range of visible light wavelengths (from blue at 450nm to red at 650nm). Compared to previous technologies, this represents significant progress, which were limited to unidirectional wavelength tuning.

This study not only lays the foundation for advanced photonic devices, but also highlights their potential in various industrial applications.
Professor Cui commented, "This technology can be applied to displays, optical sensors, optical camouflage, direct optical simulation encryption, biomimetic sensors and smart wearable devices, as well as many other applications involving broadband electromagnetic waves beyond the light, color, and visible light bands. Our goal is to expand its application scope through continuous research.".

This study was supported by the Samsung Research and Incubation Center of Samsung Electronics and the Technology Innovation Program (Flexible Intelligent Variable Information Display) of the Korea Industrial Technology Planning and Evaluation Institute.

Source: Laser Net

Recomendaciones relacionadas
  • What is field assisted additive manufacturing?

    Dr. Tan Chaolin from the Singapore Institute of Manufacturing Technology, in collaboration with China University of Petroleum, Shanghai Jiao Tong University, Princeton University, University of Malta, Huazhong University of Science and Technology (Professor Zhang Haiou), University of California, Irvine, Hunan University, and EPM Consulting, published an article titled "Review on Field Assisted Me...

    2024-07-29
    Ver traducción
  • Scientists at St. Andrews University have made significant breakthroughs in compact laser research

    Scientists at St. Andrews University have made significant breakthroughs in compact laser research after decades of hard work.Laser is widely used in fields such as communication, medicine, measurement, manufacturing, and measurement around the world. They are used to transmit information on the internet, for medical purposes, and even in facial scanners on mobile phones. Most of these lasers are...

    2023-10-04
    Ver traducción
  • Overview of Residual Stress in Metal Additive Manufacturing: Detection Techniques, Numerical Simulation, and Mitigation Strategies

    Researchers from Shantou University have reported a review of residual stresses in metal additive manufacturing: detection techniques, numerical simulations, and mitigation strategies. The relevant paper titled "A comprehensive review of residual stress in metal additive manufacturing: detection techniques, numerical simulations, and mitigation strategies" was published in the Journal of the Brazi...

    2024-12-20
    Ver traducción
  • Developing a concentration independent pressure sensing method for high-temperature combustion diagnosis

    Recently, a research group led by Professor Gao Xiaoming and Professor Liu Kun of the Chinese Academy of Sciences Hefei Institute of Physical Sciences developed a concentration independent pressure sensing method based on two-color laser absorption spectrum for high-temperature combustion diagnosis.The research findings are published in Optics Letters.Aircraft engines are developing towards high-t...

    2024-03-08
    Ver traducción
  • A New Method for Controlling Light Polarization Using Liquid Crystal to Create Holograms

    Researchers have made significant breakthroughs in controlling optical polarization, which is a key characteristic of various applications such as augmented reality, data storage, and encryption.This new method was developed by a group of scientists using liquid crystals to create holograms, which can manipulate the polarization of light at different points. This represents a significant advanceme...

    2024-03-12
    Ver traducción