Español

Luxiner launches LXR ultra short pulse laser platform

472
2024-06-11 15:19:17
Ver traducción

Luxiner, the global leader in laser technology, has launched LXR ® The ultra short pulse (USP) laser platform is a revolutionary leap in industrial laser processing. The LXR platform provides unparalleled performance, versatility, and reliability, making significant progress in burst mode processing.

 



Micro Miracle Master
The world of miniaturization is flourishing due to the continuous improvement of accuracy. In this intricate dance, ultrafast laser microfabrication became a master, choreographing a symphony of power, pulse stability, and pulse duration, creating micro miracles.

Power: Driving force
Imagine a sculptor waving a chisel. In the field of ultrafast laser microfabrication, power is like a sculptor's powerful blow. It determines the amount of material removed by each laser pulse. Higher power allows for faster processing or deeper cutting, which is crucial for creating complex microchannels or drilling submicron holes. However, just as heavy hands can crush fine work, excessive power in laser microfabrication can lead to unnecessary thermal damage. The importance of the following two elements lies here.

Pulse to pulse stability: Unknown hero
The artistry of sculptors does not rely solely on brute force. Consistent and controllable travel is equally important. This unwavering focus translates into pulse to pulse stability in the world of ultrafast lasers. Both short-term and long-term stability play a crucial role. Short term stability can minimize power fluctuations within a single pulse sequence, ensuring that each pulse can provide consistent energy. This consistency is transformed into a uniform feature size and depth of the entire microfabrication area. On the other hand, long-term stability focuses on maintaining consistent power output for a longer period of time. Just as a sculptor maintains a stable hand throughout the entire work process, a stable laser can ensure consistent results throughout the entire process.

X factor: Input ultrafast pulse
Ultra fast laser microfabrication surpasses traditional cutting tools. It introduces a revolutionary element: pulse duration. Ultra fast pulses interact with materials at a molecular level in femtoseconds (billionths of a second to millionths of a second) to minimize heat transfer to surrounding materials. Imagine switching from a chisel to a surgical knife. The precise cutting of a surgical knife can remove the required materials while minimizing the impact on the surrounding area, thus achieving complex microscopic features without damaging the delicate structure.

Perfect Harmony: Unmatched Control and Speed
Power provides driving force, and the stability between pulses ensures unwavering focus. The ultra fast pulse duration is like a surgical knife. This harmonious interaction enables the LXR platform to create breakthrough micro features with unparalleled control and speed. It breaks through the boundaries of miniaturization and paves the way for the advancement of microelectronics, photonics, medical equipment, and biosensors.

LXR Platform: Innovative Symphony
Finally, Antonio Raspa, Product Manager of Luxiner Solid State Laser, stated, "LXR ®  The platform represents the crystallization of years of dedicated research and development. By combining excellent power, unwavering stability, and ultrafast pulse technology, we have created a truly groundbreaking solution that enables manufacturers to redefine the possibilities of microfabrication. With the help of the LXR platform, symphonies of power, accuracy, and speed are now coming into play.

Luxiner: Dedicated to innovation and customer success
Luxiner enjoys a deserved reputation in producing powerful and reliable laser sources. The LXR ® platform upholds this tradition by ensuring optimal uptime and productivity, and is backed by Luxiner's excellent customer support and service.

Source: Laser Net

Recomendaciones relacionadas
  • Tiedra Famaceutica uses Macsa ID's SPA2 CB laser marking system

    Tiedra Famaceutica was founded by members of the Tiedra family in 2003 and is a manufacturer of contact lenses, health and ophthalmic products, as well as diagnostic instruments used in optometry and ophthalmic clinics.Before installing the SPA2 CB laser model for Macsa id, Tiedra used a pantograph, which is a quadrilateral system composed of hinged rods. This manual process provides limited marki...

    2023-12-14
    Ver traducción
  • NLIGHT announces financial performance for the fourth quarter and full year of 2024

    Recently, nLIGHT, a manufacturer of high-power semiconductors and fiber lasers, announced its financial performance for the fourth quarter and full year of 2024.financial summaryTotal revenue: 198.5 million US dollars, a decrease from 209.9 million US dollars in 2023, due to a decline in sales in the laser product department.Operating loss: A loss of $65.6 million, compared to a loss of $46.8 mill...

    03-04
    Ver traducción
  • Laser induced 2D material modification: from atomic scale to electronic scale

    Background IntroductionTwo dimensional materials have attracted widespread attention due to their atomic level thickness and unique properties, such as high binding energy, tunable bandgap, and new electronic degrees of freedom (valley electronics). They have many application prospects in fields such as microelectronics, nanophotonics, and nanoenergy. Various two-dimensional materials have their o...

    2024-02-23
    Ver traducción
  • Short pulse lasers in the form of chips use the so-called mode coupling principle

    Nowadays, lasers that emit extremely short flashes can be found in many research laboratories, but they usually fill the entire room. Physicists have now successfully reduced this laser to the size of a computer chip. As they reported in the journal Science, their research can lay the foundation for extremely compact detectors.A team led by Qiushi Guo from the California Institute of Technology in...

    2023-11-10
    Ver traducción
  • Progress has been made in the research of phase modulation of terahertz programmable metasurfaces based on free carrier plasmonic dispersion effect

    Recently, the team of Situ Guohai and Guo Jinying from the Aerospace Laser Technology and Systems Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, and the School of Microelectronics at Shanghai University collaborated to propose a terahertz phase controlled programmable metasurface design scheme based on free carrier plasma dispersion effect. The rela...

    2024-07-26
    Ver traducción