Español

Korean researchers use laser ablation to create deformable micro supercapacitors

861
2024-05-30 15:22:30
Ver traducción

Recently, a research team from the Korea Institute of Industrial Technology and POSTECH University successfully utilized laser sintering pattern technology to create a deformable micro supercapacitor (MSCs), specifically designed to provide energy storage solutions for soft electronic devices.

 


This breakthrough meets the urgent need for efficient energy storage systems in stretchable devices in emerging health monitoring and other applications.
MSC provides customizable shape factors, reliable performance, effective space utilization, and easy integration with electronic components, making them a strong competitor to meet this demand. However, solid metals such as gold, which are commonly used to collect current in MSCs, have limited stretching ability and limit deformation potential.

In order to manufacture deformable micro supercapacitors (MSCs) that can bend and stretch without damaging or losing function, researchers chose a liquid metal - eutectic gallium indium alloy (EGaIn) as the current collector. EGaIn is highly deformable due to its high conductivity and liquid properties. However, how to utilize EGaIn to manufacture high-density digital inter mode to ensure high-energy storage performance has become a technical challenge.

Highly deformable micro supercapacitors (MSCs) are based on liquid metal current collectors. The researchers cleverly utilized laser ablation technology to achieve a perfect combination of high capacity and flexibility in micro supercapacitors (MSCs). They chose graphene as the electrode material and polystyrene block copolymer (SEBS) as the flexible substrate material. By uniformly laying EGaIn thin film on SEBS substrate through brush method and covering it with graphene, a digital graphene EGaIn electrode was finally created using laser ablation technology.

In optimizing the laser ablation process, researchers ensured complete ablation of graphene and EGaIn without damaging the SEBS substrate. Due to the ability of graphene and EGaIn films to absorb laser light at a wavelength of 355 nm, while SEBS materials do not absorb any light, the team successfully achieved selective ablation of graphene EGaIn electrodes without sacrificing the flexibility of SEBS substrates.

By finely controlling the gap between adjacent digital electrodes and graphene mass charges, researchers achieved a region capacitance of up to 1336 μ F cm-2 and demonstrated reliable rate performance. What's even more remarkable is that these MSCs can withstand up to 1000 stretching and contraction cycles without affecting energy storage performance.

To verify the practicality of MSC as a deformable power source, researchers constructed a soft electronic system consisting of a series and parallel MSC array integrated with LEDs. The system, relying on the liquid characteristics of the EGaIn current collector and the flexibility of the SEBS substrate, can operate stably under various mechanical deformations (such as folding, stretching, twisting, etc.), fully demonstrating its powerful energy storage performance.
Laser technology has played a crucial role in this research, enabling efficient application of liquid metals in MSC current collectors. Researcher Chanwoo Yang said, "Laser technology not only ensures the accuracy of work, but also accelerates the entire manufacturing process."

In addition, laser ablation technology is also suitable for patterning various electrode materials, including carbon materials, metal oxides, and Mxene, providing broad prospects for the development of deformable and high-performance energy storage systems.

With the rapid development of microelectronics and optoelectronics technology, miniaturized and elastic energy storage devices have become crucial, from folding and rolling equipment to stretching equipment in applications such as electronic textiles and healthcare. And this deformable MSC research based on laser ablation technology will undoubtedly provide strong support for the development and commercialization of elastic energy storage devices, and demonstrate enormous application value in multiple industrial fields.

Source: OFweek

Recomendaciones relacionadas
  • Laser additive manufacturing: monitoring during defect occurrence

    Researchers at the Federal Institute of Technology in Lausanne have resolved the long-standing debate surrounding laser additive manufacturing processes through a groundbreaking defect detection method.The development of laser additive manufacturing is often hindered by unexpected defects. Traditional monitoring methods, such as thermal imaging and machine learning algorithms, have shown significa...

    2023-12-06
    Ver traducción
  • Jenoptik will invest millions of dollars to expand its optical manufacturing facilities

    A high-end manufacturing facility for semiconductor optics will be expanded at Jenoptik’s production campus in Jena, Germany. The photonics group will invest a sum in the low double-digit million euro range starting at the end of 2025.On the expanded production areas, Jenoptik will manufacture sophisticated, high-quality optical components that are mainly used in the semiconductor equipment indust...

    09-13
    Ver traducción
  • Using high-speed scanning remelting technology to achieve AlSi10Mg laser powder bed fusion with excellent strength and plasticity properties

    The development of additive manufacturing (AM) has profoundly changed the manufacturing industry, and this technology has been applied in fields such as food, medicine, automotive, and electronic components. Especially in the aerospace field, where extremely lightweight and high-strength (~500mpa) components are required, aluminum alloy additive manufacturing is considered a very promising solutio...

    2024-10-08
    Ver traducción
  • Trumpf and SiMa. ai collaboration to develop AI laser

    Recently, Trumpf Group, a leading global provider of machine tools and laser technology solutions, announced that it has partnered with software company SiMa AI has signed a partnership agreement to develop lasers with artificial intelligence (AI).It is reported that SiMa. ai is a software centric embedded edge machine learning chip system company, and the goal of both parties is to equip Trumpf'...

    2024-07-19
    Ver traducción
  • Amplitude launches femtosecond lasers for industrial applications

    Recently, French femtosecond pulse and high peak power (PW class) laser manufacturer Amplitude announced that the company has launched a newly designed Satsuma X femtosecond laser, setting a new benchmark for industrial environments.This product was first announced in 2022 and is now available in a brand new design with proven durability and versatility. In pursuit of excellence and customer satis...

    2024-07-02
    Ver traducción