Español

Improved spectrometer color filter array for software calibration without the need for laser

202
2024-05-28 16:04:55
Ver traducción

Hackaday will launch cool projects that may stimulate others to expand and enhance it, and even move in a completely new direction. This is the way the most advanced technology continues to evolve.

 


This DIY spectrometer project is a great example of this spirit. It comes from Michael Prathofer, who was inspired by Les Wright's PySpectrometer, a simple device pieced together by a pocket spectrometer and PiCam. As we pointed out at the time, [Les] added many complex instruments to the software, but this does not mean there is no room for improvement.

Michael's goal is to make his spectrometer easier to build and improve the calibration process and overall accuracy. To help solve the former, he performed software calibration on the color filter array on his Fuji X-T2. The advantage of doing so is that it does not require high-power lasers and precision micro locators to ablate CFA, and avoids the possibility of damaging expensive cameras. For the latter, Michael delved into the theories behind spectroscopy and camera optics to develop a process that associates the intensity of light in the spectrum with a specific wavelength at that location. He also conducted some machine learning during this process and trained a network to optimize the response function.

Source: Laser Net

Recomendaciones relacionadas
  • Laser induced magnetic generation of non-magnetic materials at room temperature helps to develop faster and more energy-efficient information transmission and storage technologies

    Researchers from the University of Stockholm in Sweden, the Nordic Institute for Theoretical Physics, and the University of Cafoscari in Venice, Italy have successfully demonstrated for the first time how lasers induce quantum behavior at room temperature and make non-magnetic materials magnetic. This breakthrough is expected to pave the way for faster and more energy-efficient computers, informat...

    2024-06-03
    Ver traducción
  • Scientists develop photo activated glass for clean energy production

    Japanese and Swiss scientists have collaborated to develop glass that can generate electricity under light, which may pave the way for sustainable energy production. Researchers from Tokyo Institute of Technology and the Swiss Federal Institute of Technology in Lausanne used femtosecond lasers to etch circuits on glass surfaces, resulting in the unexpected generation of semiconductor crystals.The ...

    2024-03-11
    Ver traducción
  • Semiconductor lasers will support both TE and TM modes

    Typically, for lasers in optical communication systems, waveguide designs are used to achieve a single transverse mode. By adjusting the thickness of the surrounding area of the cladding layer and the etching depth of the ridge in the ridge waveguide device, a single mode device can be obtained. The importance of lasers is reflected in the following aspects:A chip without ridge waveguide design an...

    2023-10-20
    Ver traducción
  • X photon 3D nanolithography

    Virtual and Physical Prototypes: X-ray laser direct writing 3D nanolithography.Multi-photon polymerization (MPP), also known as 3D nanoprinting, has been investigated using wavelength-tunable femtosecond lasers. At a fixed pulse width of 100 fs, any spectral color in the range of 500nm to 1200nm can be used, which reveals the interaction of more subtle photophysical mechanisms than two-photon phot...

    2023-09-11
    Ver traducción
  • Ring Laser Accuracy: Unprecedented Daily Measurement and Mapping of Earth's Rotation

    Scientists at the Technical University of Munich have made significant progress in measuring the Earth's rotation with unprecedented accuracy. Now, the ring laser from the Wettzell Geodetic Observatory can be used to capture data at a quality level unmatched anywhere in the world. These measurements are crucial for determining the position of the Earth in space, assisting climate research, and imp...

    2023-11-14
    Ver traducción