Español

Swedish KTH develops 3D printed quartz glass micro optical devices on optical fibers

785
2024-05-23 14:12:18
Ver traducción

In what has been described as the "first communication", Swedish researchers conducted 3D printed quartz glass micro optical devices on the tip of optical fibers. They said that this progress could lead to faster Internet and better connectivity, as well as innovations such as smaller sensors and imaging systems.

Scientists from the KTH Royal Institute of Technology in Stockholm have stated that combining quartz glass optical devices with optical fibers can achieve various innovations, including more sensitive remote sensors for the environment and healthcare. The printing technology they reported may also prove valuable in the production of drugs and chemicals.

This work was described in the ACS Nano journal.
Professor Kristin Gylfason from KTH stated that this method overcomes the long-term limitations of using quartz glass to construct fiber tips, which typically require high-temperature treatment, thereby damaging the integrity of temperature sensitive fiber coatings.

Compared to other methods, this process starts from a non carbon substrate. This means that there is no need for high temperatures to remove carbon, in order to make the glass structure transparent. Lead author Lee Lun Lai said that researchers have printed a quartz glass sensor, which has been proven to be more elastic than standard plastic sensors after multiple measurements.

New applications
Meanwhile, researchers from Aston University in Birmingham have received over £ 1 million ($1.27 million) in funding to develop very small optical devices that can also be installed on fiber surfaces. The potential applications are manufacturing, information technology, and agriculture.

The Engineering and Physical Science Research Council (EPSRC) in the UK has provided a grant of £ 1167290 for the PicoSNAP project. This award will be used to develop surface nanoscale axial photonics (SNAP) technology, which can manufacture micro photonic devices.

Traditionally, the accuracy of micro devices is limited by the size of atoms, and manufacturing techniques remain stable at a few nanometers. However, the PicoSNAP technology, pioneered by Professor Misha Sumetsky from the Aston Institute of Photonics Technology (AIPT), allows devices to be further scaled down so that measurements can be made in picometers.

Professor Sumetsky's goal is to develop a reliable manufacturing process to produce equipment that is both ultra precise and easy to replicate. If successful, the project will not only bring a new revolutionary technology, but also provide micro optical devices with previously unattainable performance and prepare for practical applications.

He said, "The lack of reliable and scalable picosecond precision manufacturing processes remains a major obstacle, and SNAP technology has the potential to meet this demand with its excellent accuracy and performance. The goal of this project is to develop the process, which requires a deep understanding of the relevant physical phenomena and the design and manufacture of new micro devices that are crucial for future communication, optical signal processing, microwave, and sensing technologies.".

Source: Laser Net

Recomendaciones relacionadas
  • Switzerland's top 100 sales drop to 330.9 million Swiss francs in the first half of the year

    Recently, Swiss company Bystronic disclosed its financial performance for the first half of 2024.The financial report shows that the market situation for the Swiss Super 100 in the first half of 2024 remains very tense. Customers in various end markets are unable to fully utilize their production capacity, and operations in all regions are relatively cautious.Despite Swiss supercar actively reduci...

    2024-07-24
    Ver traducción
  • The scientific research team of Beijing University of Technology opens up a new field of on-chip optics research

    Zhang Jun, an academician team of Beijing University of Technology, pioneered the on chip spectral multiplexing perception architecture, and independently developed the first 100 channel megapixel hyperspectral real-time imaging device in the world, creating the world's highest light energy utilization rate. On November 7, the team's relevant achievements were published in the journal Nature, and ...

    2024-11-08
    Ver traducción
  • On demand ultra short laser flash: controllable optical pulse pairs from a single fiber laser

    Set up a dual comb fiber laser oscillator, external pulse combination, and real-time detection.In innovative methods for controlling ultra short laser flashes, researchers from Bayreuth University and Konstanz University are using soliton physics and two pulse combs in a single laser. This method has the potential to greatly accelerate and simplify laser applications.Traditionally, the pulse inter...

    2024-01-12
    Ver traducción
  • Amada launches latest precision laser welding workstation wl-300a

    Recently, Amada weld tech Inc., a Japanese supplier of welding and cutting solutions, grandly launched a new wl-300a precision laser welding workstation, which is equipped with advanced continuous wave (CW) or quasi continuous wave (QCW) fiber lasers. It has a wide range of applications, especially for metal welding and processing of selected plastic materials, especially in the aerospace field.Wl...

    2024-05-31
    Ver traducción
  • MICRONICS launches its innovative SLS 3D printer product

    3D printing company Micronics announced the launch of its new Micron desktop selective laser sintering (SLS) 3D printer.The company stated that Micron is priced at $2999 and aims to bring industrial grade 3D printing capabilities to desktops for professionals and hobbyists. One of the main features of Micron is its ability to print complex objects without the need for supporting structures. This i...

    2024-06-17
    Ver traducción