Español

Toronto research has discovered 21 new sources of organic solid-state lasers

730
2024-05-22 14:15:17
Ver traducción

Organic solid-state lasers (OSLs) are expected to achieve widespread applications due to their flexibility, tunability, and efficiency. However, they are difficult to manufacture and require over 150.000 possible experiments to find successful new materials, and discovering them will be a work of several lifetimes. In fact, according to data from the University of Toronto in Canada, only 10-20 new OSL materials have been tested in the past few decades.

Now, researchers from the university's acceleration alliance have accepted this challenge and used Autonomous Driving Laboratory (SDL) technology. Once established, they can synthesize and test over 1000 potential OSL materials and discover at least 21 OSL gain candidate materials within a few months.

SDL uses artificial intelligence and robot synthesis to simplify the process of identifying new materials. In this case, the new materials exhibit excellent laser properties. The Toronto team stated that so far, SDL is typically limited to one physics laboratory in one geographical location.

This work was described in a paper titled "Discovery of delocalized asynchronous closed-loop of organic laser emitters" in the journal Science. In this study, laboratories from Toronto and Vancouver, Canada, Glasgow, Scotland, Illinois, USA, and Fukuoka, Japan were all involved.

Each laboratory can contribute its professional knowledge and resources. This decentralized workflow is managed by a cloud based platform, which not only improves efficiency but also allows for rapid replication of experimental results, ultimately democratizing the discovery process and accelerating the development of next-generation laser technology.

"This paper demonstrates that closed-loop methods can be delocalized, and researchers can accelerate the discovery of materials in the early stages of commercialization from molecular states to devices," said Dr. Al á n Aspuru Guzik, Director of the Acceleration Alliance.
"The team designed an experiment from molecules to devices, with the final equipment manufactured in Japan. They were scaled up in Vancouver and then transferred to Japan for characterization," he said.

The discovery of these new materials represents a significant advancement in the field of molecular optoelectronics. It paves the way for the performance and functional enhancement of OSL devices, and sets a precedent for future delocalized discovery activities in the fields of materials science and autonomous driving laboratories.

Toptica launches FemtoFiber ultra series lasers
Laser developer Toptica has launched the FemtoFiber Ultra series, the company's "next-generation femtosecond fiber laser" designed specifically for multiphoton microscopy, two-photon lithography, and semiconductor detection.

With over 20 years of experience in developing OEM grade fiber lasers, Toptica has created a turnkey, fully integrated, and optimized laser system that provides excellent performance and reliability for the most demanding scientific and industrial applications in the biotechnology and semiconductor industries.

The FemtoFiber ultra series offers unparalleled accuracy and consistency, delivering high average power, excellent temporal and spatial beam quality, and femtosecond pulses in a compact and sturdy package.

This industrial grade optical engine is designed to withstand the harsh conditions of advanced imaging and micro/nano processing, making it an ideal choice for high-end applications. Its seamless operation and low cost of ownership make it a multifunctional solution, enabling researchers and manufacturers to explore new fields of multiphoton microscopy and semiconductor detection.

Luisa Hofmann, Product Manager for Biophotonics and Materials at Toptica, commented, "We designed these lasers to meet the ever-changing needs of our customers, providing them with powerful tools to deliver consistent results while minimizing downtime and costs, with output wavelengths of 780, 920, and 1050 nm.".

Source: Laser Net

Recomendaciones relacionadas
  • Surface coupled laser technology manufacturer, secured £ 2.94 million in financing

    Recently, renowned surface coupled laser technology supplier Vector Photonics announced that it has received £ 1.667 million in equity investment and £ 1.27 million in additional research funding for the continued commercialization of its unique surface coupled laser (SCL) technology. Surface coupled lasers have completely changed semiconductor laser manufacturing, improving the performance of var...

    2024-06-14
    Ver traducción
  • The Innovation Road of Laser Welding Automation Production Line for New Energy Vehicle Motor stators

    With the increasing global attention to environmental protection and sustainability, new energy vehicles have become an important trend in the automotive industry. In this context, the production method of the core component of new energy vehicles - the motor stator - has also undergone profound changes. Welding, as a key manufacturing process, has brought disruptive innovation to the manufacturin...

    2024-02-28
    Ver traducción
  • Developing miniaturized laser technology: This company has secured $5 million in financing

    Recently, high-performance laser supplier Skylark Lasers announced that it has raised $5 million in investment to further advance its efforts in miniaturized laser technology.Skylark Lasers is established at the center of the Scottish Photonics Cluster, focusing on the design and production of compact diode pumped solid-state (C-DPSS) lasers with the purest spectral characteristics, providing high...

    2023-11-02
    Ver traducción
  • GZTECH selected as a reserve "golden seed" enterprise for listing in Hubei Province

    Recently, relevant departments officially released the list of reserve "golden seed" enterprises for listing in Hubei Province for 2024-2025. Following being selected as reserve "golden seed" enterprises for listing in Donghu High tech Zone and Wuhan City in 2024, Wuhan GZTECH Co., Ltd. (hereinafter referred to as "GZTECH") once again stood out from many candidate enterprises with its outstanding ...

    05-19
    Ver traducción
  • Emerging laser technologies for precise manufacturing of multifunctional nanomaterials and nanostructures

    The use of photons to directly or indirectly drive chemical reactions has fundamentally changed the field of nanomaterial synthesis, leading to the emergence of new sustainable laser chemistry methods for manufacturing micro - and nanostructures. The incident laser radiation triggers complex interactions between chemical and physical processes at the interface between solid surfaces and liquid or ...

    2024-08-05
    Ver traducción