Español

Observation of nanoscale behavior of light driven polymers using combination microscopy technology

632
2024-03-12 14:02:46
Ver traducción

Expanding our scientific understanding often boils down to observing what is happening as closely as possible. Now, researchers from Japan have observed the nanoscale behavior of azo polymer films and triggered them with lasers.

In a study published in Nano Express last month, researchers at Osaka University used a combination of cutting-edge scanning high-speed atomic force microscopy and optical microscopy to create films as polymer films changed.

Azo polymers are photoactive materials, which means they undergo changes when light shines on them. Specifically, light can alter their chemical structure, thereby altering the surface of thin films. This makes them very interested in applications such as optical data storage and providing light triggered motion.

The ability to use focused laser to initiate these changes during image capture is called in situ measurement.
"Usually, changes in polymer films are studied by processing them, such as by irradiating them with light and then measuring or observing them. However, the information provided is limited," explained Keishi Yang, the main author of the study. "The use of HS-AFM devices, including inverted optical microscopes with lasers, allows us to trigger changes in azo polymer films while observing them in real-time with high spatiotemporal resolution."

HS-AFM measurement can track the dynamic changes on the surface of polymer films in movies at a speed of two frames per second. It was also found that the direction of polarized light used has an impact on the final surface pattern.

Further research using in-situ methods is expected to thoroughly understand the mechanism of photo driven azo polymer deformation, thereby maximizing the potential of these materials.

"We have demonstrated our technique for observing polymer membrane deformation," said Takayuki Umakoshi, senior author of the study. However, in doing so, we have demonstrated the potential to combine cutting-edge scanning HS-AFM with laser sources for materials science and physical chemistry.

Materials and processes that respond to light are important in a wide range of fields in chemistry and biology, including sensing, imaging, and nanomedicine. In situ technology provides an opportunity to deepen understanding and maximize potential, and therefore has the potential to be applied to various optical devices.

Source: Laser Net

Recomendaciones relacionadas
  • Scientists have created a full spectrum white light laser with bright spot, smooth and flat spectrum, and large pulse energy characteristics

    Recently, the team led by Professor Li Zhiyuan from South China University of Technology has successfully developed a full spectrum white light laser, which has the characteristics of bright spot, smooth and flat spectrum, and large pulse energy. It can cover the ultraviolet visible infrared full spectrum of 300-5000nm, with a single pulse energy of 0.54mJ.The launch of such a full spectrum white ...

    2023-11-07
    Ver traducción
  • Received NASA contract! Breakthrough blue light laser technology leads the space power revolution

    On May 6th, NUBURU, a leading enterprise in high-power and high brightness industrial blue laser technology, announced that the company has been awarded a second phase contract worth $850000 by the National Aeronautics and Space Administration (NASA) to promote blue laser power transmission technology as a unique solution that significantly reduces the size and weight of equipment required for lun...

    2024-05-08
    Ver traducción
  • BWT 969nm semiconductor pump source

    Semiconductor laser pump sources, especially those with a wavelength of 969nm, have become the preferred choice for high-power/high peak energy disc lasers due to their reduced quantum losses and heat generation.The 3000W 969nm fiber coupled semiconductor laser system launched by BWT uses 800 μ m NA0.22 fiber to output flat top optical energy distribution, combining lightweight and excellent optic...

    05-09
    Ver traducción
  • The wide application of laser plastic welding technology in the field of automobile manufacturing

    With the rapid development of society, people's demands for energy conservation, emission reduction, and safety in automobiles are increasing. Automobile manufacturers are seeking lightweight manufacturing processes for automobiles, changing traditional component packaging processes, and so on. Laser plastic welding technology has emerged, and below is a brief sharing of the application of plastic...

    2024-09-26
    Ver traducción
  • China University of Science and Technology realizes millisecond level integrated quantum memory

    Recently, the team led by Academician Guo Guangcan from the University of Science and Technology of China has made significant progress in the field of integrated quantum storage. The research team led by Li Chuanfeng and Zhou Zongquan has improved the storage time of integrated quantum memory from 10 microseconds to milliseconds based on their original noiseless photon echo (NLPE) scheme, while s...

    03-31
    Ver traducción