Español

Scientists develop photo activated glass for clean energy production

398
2024-03-11 13:58:12
Ver traducción

Japanese and Swiss scientists have collaborated to develop glass that can generate electricity under light, which may pave the way for sustainable energy production. Researchers from Tokyo Institute of Technology and the Swiss Federal Institute of Technology in Lausanne used femtosecond lasers to etch circuits on glass surfaces, resulting in the unexpected generation of semiconductor crystals.

The American scientific journal Applied Physics Review reported this breakthrough in January of this year, which enables glass to be transformed into an active material that can transmit current, similar to semiconductors.

Yves Bellouard, Associate Professor at the Swiss Academy and Director of the Galatea Laboratory, praised the technology as "surprising and innovative" as it can modify materials without adding additional additives. This collaborative project involves the use of tellurite glass commonly used in the production of optical fibers, provided by a Japanese research institute.

Goezden Torun, a student at the Belouard laboratory, accidentally created a semiconductor crystal while conducting experiments with femtosecond lasers on nitrite glass. Then, the laser engraving circuit on the glass surface promotes the generation of current responsive to ultraviolet and visible light.

Associate Professor Tetsuo Kishi from Tokyo Institute of Technology emphasized the transformative potential of this technology, transforming glass from a passive material that only allows light to pass through to an active material with semiconductor like properties. Kishi suggests modifying the glass composition to increase practicality, making it lighter and thinner.

Although challenges still exist, researchers envision future applications where some windows covered with tellurite glass, modified by femtosecond lasers, can serve as a source of clean energy, potentially reducing dependence on fossil fuels.

This development represents a promising step towards sustainable energy solutions, although practical implementation may require further refinement.

Source: Laser Net

Recomendaciones relacionadas
  • Progress in research on neodymium doped strontium aluminate lanthanum magnesium laser crystals by Shanghai Optics and Machinery Institute

    Recently, the Advanced Laser and Optoelectronic Functional Materials Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, has made progress in the research of Nd: ASL (Sr0.7Nd0.05La0.25Mg0.3Al22.7O19) laser crystals, and the related achievements were published in Infrared Physics&Technology under the title of "Tunable laser operations on Nd doped cont...

    2024-03-19
    Ver traducción
  • Personnel changes at Optimax, a precision optical manufacturer

    On November 25th, Optimax, the largest precision optics manufacturer in the United States, announced the appointment of Joseph Spilman as CEO and Pete Kupinski as President. After developing a comprehensive succession plan, Optimax CEO Rick Plympton will retire along with President and Founder Mike Mandina.Mandina stepped down in 2021 and passed on the title of CEO to Spilman, strategically appo...

    2024-11-28
    Ver traducción
  • Reshaping the Sky: Laser Scanning Drones Innovate Data Collection

    Imagine soaring above the Earth, the world unfolds in patterns and reliefs, and the terrain whispers its secrets in the wind. Now imagine capturing these whispers and translating them into a digital language to draw our world map with unprecedented accuracy. Welcome to the forefront of laser scanning drones, a technological ballet in the sky where the fusion of flight and laser precision is reshap...

    2024-04-07
    Ver traducción
  • Progress has been made in the development of anti resonant hollow core fiber Raman probes with low background noise at Shanghai Optics and Machinery Institute

    Recently, the research team of the Special Glass and Fiber Research Center of the Advanced Laser and Optoelectronic Functional Materials Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, aimed at the demand for in-situ detection of Raman signals, expanded the functions of the laboratory commercial Renishaw Invia confocal micro Raman spectrometer by usi...

    2024-05-22
    Ver traducción
  • BMW uses WAAM 3D printing to optimize derivative designs

    BMW explained how to use WAAM (Arc Additive Manufacturing) starting from 2025 to manufacture lighter and stronger automotive components and reduce waste generation, in order to optimize the use of generative design tools.The demonstrated WAAM process uses aluminum wire raw materials directly deposited through laser welding heads, enabling automotive companies to manufacture lighter and more robust...

    2024-04-13
    Ver traducción