Español

A Large Angle Color Holographic 3D Display System Based on Color LCD Grating

180
2024-01-24 11:52:41
Ver traducción

Holographic display technology provides the ultimate solution for true 3D display, with enormous potential in augmented reality and virtual reality. However, the color and viewing angle of holographic 3D displays mainly depend on the wavelength of the laser and the pixel size of the current spatial light modulator. The inevitable color difference and narrow viewing angle in conventional systems seriously affect the holographic display effect, hindering the application of holographic 3D display in many fields.

In a new paper published in "Light: Science and Applications", a group of scientists led by Professor Qiang Hua Wang from Beihang University in China and their colleagues have developed a 3D display system with a large viewing angle based on color liquid crystal gratings. The proposed system displays a color perspective of 50.12 º without any color difference.

Beihang researchers use specially designed color liquid crystal gratings with the same diffraction angle to perform secondary diffraction on incident RGB light, expanding the viewing angle through secondary diffraction. Color liquid crystal gratings have three different spacing regions in a liquid crystal unit, corresponding to incident light of different wavelengths. In addition, a method for generating chromatic aberration free holograms has been proposed, which, in conjunction with color liquid crystal gratings, achieves large angle color display. By using the proposed system, 3D color objects can be vividly reconstructed without color difference and viewed from a large perspective.

The reported system solves the problems of small viewing angle and severe color difference in traditional holographic 3D display systems, and has good display effects and broad application prospects in medical, industrial and other fields.

Source: Laser Net

Recomendaciones relacionadas
  • New, low-cost, and high-efficiency photonic integrated circuits

    The rapid development of photonic integrated circuits (PICs) has combined multiple optical devices and functions on a single chip, completely changing optical communication and computing systems.For decades, silicon-based PICs have dominated the field due to their cost-effectiveness and integration with existing semiconductor manufacturing technologies, despite their limitations in electro-optic ...

    2024-05-10
    Ver traducción
  • NASA plans to use lasers to measure the impact of exhaust gases on the lunar surface during landing, in order to plan lunar landings more effectively

    Recently, NASA's official website showed that a research team at the University of Central Florida has tested an instrument called Ejecta STORM, which aims to measure the size and velocity of surface particles generated by exhaust gases from rocket powered landers on the moon or Mars.According to NASA, when a spacecraft lands on the moon or Mars, rocket exhaust plumes can produce efflorescent ejec...

    2023-10-31
    Ver traducción
  • Significant progress has been made in the manufacturing and measurement of EUV lithography light source collection mirrors

    Summary:To filter out infrared light from the driving light source in the extreme ultraviolet lithography (EUVL) light source system, a rectangular grating structure needs to be fabricated on the surface of the collection mirror. However, the collection mirror grating usually undergoes deformation during the manufacturing process, resulting in a decrease in filtering efficiency. The process errors...

    04-02
    Ver traducción
  • This semiconductor integrator launches laser chip and array technology

    Recently, Sivers Semiconductors, a well-known chip and integration module supplier in Sweden, announced that its subsidiary Sivers Photonics is partnering with ecosystem partners to showcase its advanced laser chip and array technology at the OFC conference in Santiago.The first on-site demonstration used Ayar Labs optical I/O and CW-WDM MSA compatible SuperNova ™ The light source is powered...

    2024-03-29
    Ver traducción
  • IPG launches dual beam fiber laser for additive manufacturing applications

    Recently, American fiber laser giant IPG Photonics announced the launch of a new laser series specifically designed for the additive manufacturing field.The highlight of this series of lasers lies in its integration of IPG's unique dual beam technology, which can independently regulate and simultaneously emit core and ring beams, setting a new benchmark in accuracy, efficiency, and reliability.Ba...

    2024-11-25
    Ver traducción