Español

The NIRPS alliance is driven by laser frequency comb technology to advance research on exoplanets

989
2023-12-13 14:17:56
Ver traducción

The Near Infrared Red Planet Search Alliance, jointly managed by the Department of Astronomy at the University of Geneva and the University of Montreal, has received cutting-edge advances in CSEM laser frequency comb technology.

The laser frequency comb is a precise and stable light source designed to help the NIRPS alliance unravel the mysteries of distant planets, including the possibility of searching for extraterrestrial life.
This technology has also been implemented at the La Silla Observatory of the European Southern Observatory in Chile.

The NIRPS alliance is expanding research on exoplanets
Through collaboration, researchers hope to expand research on exoplanets. Exoplanets are described as "cosmic nomads" and have been attracting scientists for about thirty years.

The NIRPS alliance aims to measure their weight, temperature, and atmosphere. NIRPS is a highly advanced spectrometer that can carefully examine the light emitted by distant stars and detect changes caused by the gravitational pull of planets in their orbits.

Implementing laser frequency comb technology
Now, the NIRPS spectrometer has been implemented together with the laser frequency comb developed by CSEM. The light generated by this device has a stable spectrum, characterized by uniformly distributed lines.

Laser frequency comb helps to measure the radial velocity of stars as an optical reference. This indicator is important for understanding the speed at which stars approach or move away from us.

The laser frequency comb installed at the La Silla Observatory in Chile calibrates the NIRPS spectrometer to high accuracy. Therefore, the NIRPS alliance will be able to discover the behavior of exoplanets similar to Earth, thus ushering in a new era of space exploration and discovery.

Christopher Bonzon, CSEM Laser Technology Manager, said, "CSEM's laser frequency comb technology is a microcosm of spectral accuracy and stability. The system uses electro-optic modulation to generate equidistant laser lines locked in molecular transitions, with intervals of exactly 15 GHz, far exceeding the scope of competing technologies.".

"The function of frequency combs in the spectral domain is like a ruler, providing a reference for matching data for NIRPS spectrometers over the years."

A high-performance spectrometer for discovering extraterrestrial life
Exoplanets are fascinating and complex, revealing new insights into the origin of planetary systems.
This collaboration represents an important milestone in understanding exoplanets and searching for extraterrestrial life.

Professor Fran ç ois Bouchy, Joint Chief Researcher of the NIRPS Alliance, said, "We are very proud to collaborate with CSEM on this exciting project. Their laser frequency comb technology is crucial for achieving the high performance and long-term reliability required for NIRPS spectrometers.".
We hope to make new discoveries together and contribute to the advancement of exoplanet science.

Source: Laser Net

Recomendaciones relacionadas
  • 国内自主研发首套碳化硅晶锭激光剥离设备投产

           近日,从江苏通用半导体有限公司传来消息,由该公司自主研发的国内首套的8英寸碳化硅晶锭激光全自动剥离设备正式交付碳化硅衬底生产领域头部企业广州南砂晶圆半导体技术有限公司,并投入生产。 图:8英寸SiC晶锭激光全自动剥离设备       该设备可实现6英寸和8英寸碳化硅晶锭的全自动分片,包含晶锭上料、晶锭研磨、激光切割、晶片分离和晶片收集,一举填补了国内碳化硅晶锭激光剥离设备领域研发、制造的市场空白,突破了国外的技术封锁,将极大地提升我国碳化硅芯片产业的自主化、产业化水平。       该设备年可剥离碳化硅衬底20000片,实现良率95%以上,与传统的线切割工艺相比,大幅降低了产品损耗,而设备售价仅仅是国外同类产品的1/3。       近年来,碳化硅功率器件在大功率半导体市场中所占的份额不断提高,并被广泛应用于新能源汽车、城市轨道交通、风力发电、高速移动、物联网等一系列领域...

    2024-08-26
    Ver traducción
  • Israeli startup has developed a new laser powder bed fusion technology (SLS)

    Starting company 3DM from Israel has developed a new laser powder bed fusion technology (SLS) and recently released its first product. It is reported that the new technology developed by this young company established in 2016 will open up the possibility of new materials.3DM quantum cascade laserThe quantum cascade laser (QCL) stands out in the competition of 3DM in the SLS field. QCL was develope...

    2023-10-27
    Ver traducción
  • China University of Science and Technology has made progress in the study of the regulatory mechanism of thermally induced delayed fluorescence

    Recently, Professor Zhou Meng's research group at the University of Science and Technology of China collaborated with Professor Fu Hongbing's team at the Capital Normal University to reveal the mechanism by which aggregation effects regulate the luminescent properties of thermally delayed fluorescent materials. The research findings, titled "Aggregation Enhanced Thermally Activated Delayed Fluoros...

    2024-06-28
    Ver traducción
  • The University of Stuttgart has simplified the detection of nanoplastics

    Detecting the presence of nanoscale plastic particles in the environment has become a topic of concern for industrial societies worldwide, not least since particles of that size can evade the body's blood-brain barrier and damage metabolic processes.Optical technologies have been at the forefront of these monitoring efforts. Recent examples have included the use of stimulated Raman scattering to s...

    09-15
    Ver traducción
  • More penetrating than X-rays μ Meson imaging is expected to be advanced with high-power lasers

    μ Mesons are naturally occurring subatomic particles that can penetrate much deeper dense matter than X-rays. Therefore, μ Meson imaging can enable scientists to capture images of nuclear reactors, volcanoes, tsunamis, and hurricanes. However, this process is slow, as it occurs naturally μ The low flux of mesons requires several months of exposure time for the image.It is understood that ...

    2023-11-01
    Ver traducción