Español

Research and investigate the thermal effects of 3D stacked photons and electronic chips

817
2023-12-09 14:18:13
Ver traducción

Hybrid 3D integrated optical transceiver. (A, B) Test setup: Place the photon chip (PIC) on the circuit board (green), and glue the electronic chip (EIC) onto the top of the photon chip. (C) It is the cross-section of the EIC-PIC component with micro protrusions. (D) Display the mesh of the finite element model.

The latest progress in artificial intelligence, more specifically, is the pressure placed on data centers by large language models such as ChatGPT. Artificial intelligence models require a large amount of data for training, and efficient communication links become necessary to move data between processing units and memory.

For decades, optical fiber has been the preferred solution for long-distance communication. For communication within short distance data centers, due to the excellent performance of fiber optic compared to traditional electrical links, the industry is now also adopting fiber optic. Recent technological developments can now even achieve the conversion from electrical interconnection to optical interconnection over very short distances, such as communication between chips within the same package.

This requires converting the data stream from the electrical domain to the optical domain, which occurs in the optical transceiver. Silicon photonics is the most widely used technology for manufacturing these optical transceivers.

The active photon devices inside the chip still need to be connected to electronic drivers to provide power to the devices and read input data. By using 3D stacking technology, electronic chips are stacked directly above photonic chips, achieving tight integration of low parasitic capacitance components.

In a recent study published in the Journal of Optical Microsystems, the thermal effects of this 3D integration were investigated.

The design of photonic chips consists of a series of circular modulators known for their temperature sensitivity. In order to operate in demanding environments such as data centers, they require active thermal stability. This is achieved in the form of an integrated heater. For energy efficiency reasons, it is obvious that the power required for thermal stability should be minimized.

A research team from the University of Leuven and Imec in Belgium measured the heater efficiency before and after EIC flip chip bonding through experiments on PIC. The relative loss of efficiency was found to be -43.3%, which is a significant impact.

In addition, the 3D finite element simulation attributes this loss to thermal diffusion in EIC. This thermal diffusion should be avoided, as ideally, all the heat generated in the integrated heater is contained near the photonic device. After bonding EIC, the thermal crosstalk between photon devices also increased by up to+44.4%, making individual thermal control more complex.

Quantifying the thermal impact of 3D photonic electronic integration is crucial, but preventing loss of heater efficiency is also important. For this reason, thermal simulation studies were conducted, in which typical design variables were changed to improve heater efficiency. The results indicate that by increasing μ The spacing between bumps and photonic devices and the reduction of interconnect linewidth can minimize the thermal loss of 3D integration.

Source: Laser Net

Recomendaciones relacionadas
  • Significant breakthrough in intelligent spectral environment perception research at Xi'an Institute of Optics and Fine Mechanics

    Recently, the Xi'an Institute of Optics and Fine Mechanics of the Chinese Academy of Sciences has made significant progress in the field of intelligent spectral environmental perception. Relevant research results have been published in the top journal in the field of environmental science, Environmental Science&Technology (Nature Index, 5-Year IF: 11.7), and have been selected as cover papers....

    03-20
    Ver traducción
  • Researchers have created the first organic semiconductor laser that can be operated without the need for a separate light source

    Researchers at the University of St. Andrews in Scotland have manufactured the first organic semiconductor laser to operate without the need for a separate light source - which has proven to be extremely challenging. The new all electric driven laser is more compact than previous devices and operates in the visible light region of the electromagnetic spectrum. Therefore, its developers stated that...

    2023-11-15
    Ver traducción
  • Breakthrough in Silicon Based Room Temperature Continuous Wave Topological Dirac Vortex Microcavity Laser

    With the explosive growth of data traffic, the market is extremely eager for hybrid photonic integrated circuits that can combine various optical components on a single chip.Silicon is an excellent material for photonic integrated circuits (PICs), but achieving high-performance laser sources in silicon still poses challenges. The monolithic integration of III-V quantum dot (QD) lasers on silicon i...

    2023-10-26
    Ver traducción
  • IMEC Introduces World's First 110GHz+ C-Band GeSi EA Modulator

    The nanoelectronics research center IMEC from Belgium announced the successful completion of a significant trial: the fabrication of a 110GHz C-band GeSi electro-absorption modulator on a 300mm silicon photonics platform.Achieving a net data rate of 400Gb/s per lane and optimized for compactness, low latency, and high energy efficiency, imec says its modulator “establishes the foundation for next-...

    10-09
    Ver traducción
  • HSG Laser launches new generation laser solutions

    HSG Laser unveiled its next-generation laser cutting solutions—the GH V2.0 high-power flatbed system and TS2 intelligent tube cutting machine—at its Düsseldorf showroom, marking a major milestone in its European market expansion. (Image: HSG Laser)Attended by customers and partners from across the continent, the event featured live demonstrations of both systems and highlighted HSG’s growing i...

    06-27
    Ver traducción