Español

The project cycle has been significantly shortened! Scientists use supercomputing to assist in laser fusion research

372
2023-10-26 13:58:46
Ver traducción

Recently, the Laser Energy Laboratory (LLE) at the University of Rochester installed a new supercomputer to support its laser fusion experiments.

The new supercomputer has increased the computing power of the laboratory by four times and shortened the time required to complete certain projects from 30 weeks to a few days.

The Laser Energy Laboratory (LLE) at the University of Rochester is one of the few facilities in the world that studies laser driven inertial confinement fusion (ICF). Scientists use these facilities for national security purposes and obtain energy from nuclear fusion.
Valeri Goncharov, the director of the theoretical department and scientist at the laboratory, said, "A new supercomputer located at the university will enable researchers to simulate complex high-energy density phenomena in ICF in three-dimensional space with unprecedented detail.

For example, it is very difficult, if not impossible, to directly measure the evolution of micrometer scale target defects in implosion. However, detailed 3D simulations can simulate how this phenomenon changes experimental observations that are easier to measure, "Goncharov explained." Discovering the correlation between simulation results and experimental data will help determine the importance of sub scale target features and other complex physical effects in experiments.

The machine is called "Conesus" and is manufactured by Intel and developed in collaboration with Dell Technologies and Lawrence Livermore National Laboratory (LLNL). It is currently one of the only seven fourth generation Intel Sapphire Rapids systems worldwide and one of the only two systems in the United States.

The 'TOP 500 List' project began in 1993 and publishes the latest list of the world's most powerful supercomputers twice a year.

How will laser fusion experiments benefit?
The Laser Energy Laboratory at the University of Rochester has two very powerful lasers - Omega and Omega EP - used by researchers for research, including those involving ICF. Last year, scientists made a breakthrough in ignition (i.e. fusion reactions that generate net energy gain) at LLNL's National Ignition Facility (NIF), and this work is based on this breakthrough.

William Scullin, the head of the high-performance computing team at the laboratory, said, "Approximately 10 times a day, our laser is used to create a high-energy star in a jar
But the path to laser driven inertial confinement fusion (ICF) begins with supercomputers modeling materials, lasers, and experiments themselves.

Scullin said, "We have 1D, 2D, and 3D modeling capabilities to simulate inertial confinement fusion. We simulate materials and plasma under extreme temperatures and pressures. High power lasers are not commercially available components. Therefore, we have designed many of our own optical and laser systems internally. In addition, there is an increasing amount of statistical work to be done.

According to Scullin, as the demand for statistical analysis increases, computational scientists are exploring how to use machine learning to discover what from old and new data. To make these discoveries possible, LLE needs new computing resources.
Scullin stated that Conesus will provide scientists with computing resources to collect more data and conduct high-resolution research, including using machine learning on larger datasets. Projects that may take 30 weeks to complete on early systems can be completed within a few days using Conesus.

Conesus has planned several projects, including testing a statistical model for low-temperature implosion in Omega laser systems; simulation α Particle cessation and combustion of plasma; Studying liquid crystals produces large responses and has very high thermal stability.

The Laser Energy Laboratory (LLE) at the University of Rochester will accommodate two 25 gigawatt lasers as part of a project supported by the National Science Foundation (NSF) at the University of Rochester, with a budget of $18 million and a duration of 3 years. As part of this project, the laboratory will establish a new facility called EP-OPAL, which will be dedicated to studying the interaction between ultra-high intensity lasers and matter.

Source: OFweek

Recomendaciones relacionadas
  • Jena Helmholtz Institute Using Air Deflection Laser Beam

    A novel method is used to deflect the laser beam using only air. The interdisciplinary research team reported in the journal Nature Photonics that invisible gratings made solely of air not only do not suffer damage from lasers, but also retain the original quality of the beam. The researchers have applied for a patent for their method.Technology and PrinciplesThis innovative technology utilizes so...

    2023-10-07
    Ver traducción
  • STREAMLIGHT Upgrade TLR RM Light with Red or Green Laser

    Streamlight, a leading supplier of high-performance lighting and weapon lights/laser aiming equipment, has launched upgraded models of its TLR RM 1 and TLR RM 2 series of lights, each now equipped with an HPL face cap, providing ultra bright beams of up to 1000 lumens and an extended range of up to 22000 candela.The popular TLR RM 1 and TLR RM 2 models are equipped with red or green lasers, both o...

    2024-02-23
    Ver traducción
  • Vigo University School of Technology invents laser glass recycling system

    LaserON, a laser industrial application group at the University of Vigo, is leading a European project that aims to revolutionize the glass recycling process by developing a new technology called glass laser conversion, so that everyone can recycle at home. This group is led by Professor Juan Pou and Professor Rafael Comesa ñ a, and is part of Cintecx, leading EverGlass. Its partners come f...

    2024-01-19
    Ver traducción
  • Using attosecond pulses to reveal new information about the photoelectric effect

    Scientists from the Stanford National Accelerator (SLAC) laboratory of the US Department of Energy have revealed new information about the photoelectric effect using attosecond pulses: the delay time of photoelectric emission is as long as 700 attosecond, far exceeding previous expectations. The latest research challenges existing theoretical models and helps to reveal the interactions between ele...

    2024-09-02
    Ver traducción
  • The world's first tunable wavelength blue semiconductor laser

    Recently, researchers from Osaka University in Japan have developed the world's first compact, wavelength tunable blue semiconductor laser in a new study. This breakthrough paves the way for far ultraviolet light technology and brings enormous potential for applications such as virus inactivation and bacterial disinfection. The research results have been published in the journal Applied Physics Le...

    2024-11-23
    Ver traducción