Español

The project cycle has been significantly shortened! Scientists use supercomputing to assist in laser fusion research

217
2023-10-26 13:58:46
Ver traducción

Recently, the Laser Energy Laboratory (LLE) at the University of Rochester installed a new supercomputer to support its laser fusion experiments.

The new supercomputer has increased the computing power of the laboratory by four times and shortened the time required to complete certain projects from 30 weeks to a few days.

The Laser Energy Laboratory (LLE) at the University of Rochester is one of the few facilities in the world that studies laser driven inertial confinement fusion (ICF). Scientists use these facilities for national security purposes and obtain energy from nuclear fusion.
Valeri Goncharov, the director of the theoretical department and scientist at the laboratory, said, "A new supercomputer located at the university will enable researchers to simulate complex high-energy density phenomena in ICF in three-dimensional space with unprecedented detail.

For example, it is very difficult, if not impossible, to directly measure the evolution of micrometer scale target defects in implosion. However, detailed 3D simulations can simulate how this phenomenon changes experimental observations that are easier to measure, "Goncharov explained." Discovering the correlation between simulation results and experimental data will help determine the importance of sub scale target features and other complex physical effects in experiments.

The machine is called "Conesus" and is manufactured by Intel and developed in collaboration with Dell Technologies and Lawrence Livermore National Laboratory (LLNL). It is currently one of the only seven fourth generation Intel Sapphire Rapids systems worldwide and one of the only two systems in the United States.

The 'TOP 500 List' project began in 1993 and publishes the latest list of the world's most powerful supercomputers twice a year.

How will laser fusion experiments benefit?
The Laser Energy Laboratory at the University of Rochester has two very powerful lasers - Omega and Omega EP - used by researchers for research, including those involving ICF. Last year, scientists made a breakthrough in ignition (i.e. fusion reactions that generate net energy gain) at LLNL's National Ignition Facility (NIF), and this work is based on this breakthrough.

William Scullin, the head of the high-performance computing team at the laboratory, said, "Approximately 10 times a day, our laser is used to create a high-energy star in a jar
But the path to laser driven inertial confinement fusion (ICF) begins with supercomputers modeling materials, lasers, and experiments themselves.

Scullin said, "We have 1D, 2D, and 3D modeling capabilities to simulate inertial confinement fusion. We simulate materials and plasma under extreme temperatures and pressures. High power lasers are not commercially available components. Therefore, we have designed many of our own optical and laser systems internally. In addition, there is an increasing amount of statistical work to be done.

According to Scullin, as the demand for statistical analysis increases, computational scientists are exploring how to use machine learning to discover what from old and new data. To make these discoveries possible, LLE needs new computing resources.
Scullin stated that Conesus will provide scientists with computing resources to collect more data and conduct high-resolution research, including using machine learning on larger datasets. Projects that may take 30 weeks to complete on early systems can be completed within a few days using Conesus.

Conesus has planned several projects, including testing a statistical model for low-temperature implosion in Omega laser systems; simulation α Particle cessation and combustion of plasma; Studying liquid crystals produces large responses and has very high thermal stability.

The Laser Energy Laboratory (LLE) at the University of Rochester will accommodate two 25 gigawatt lasers as part of a project supported by the National Science Foundation (NSF) at the University of Rochester, with a budget of $18 million and a duration of 3 years. As part of this project, the laboratory will establish a new facility called EP-OPAL, which will be dedicated to studying the interaction between ultra-high intensity lasers and matter.

Source: OFweek

Recomendaciones relacionadas
  • 43 seconds! Completion of laser welding of a new energy vehicle body

    March 8, in the three sessions of the 14th National People's Congress, the second “representative channel” focused on interviews, the National People's Congress, the party secretary of HGTECH Science and Technology, Chairman of the Board of Directors Ma Xinqiang, said in response to a reporter's question, in order to crack the “strangle  “technical problems, HGTECH over the years in the field of h...

    03-11
    Ver traducción
  • Tsinghua University has made progress in the field of magnetic field and laser composite processing

    The National Key Laboratory of Interface Science and Technology for High end Equipment at Tsinghua University has made progress in the field of magnetic field and laser composite processing - magnetic field assisted laser shock strengthening of Ti6Al4V alloy. The relevant research was published as a cover article titled "Magnetic Field Assisted Laser Shock Peening of Ti6Al4V Alloy" in the journal ...

    2023-09-16
    Ver traducción
  • Thales will provide laser payloads for Hellas Sat 5

    Hellas Sat, which holds a majority stake in Arabsat, has reached a memorandum of understanding with Thales Alenia Space to collaborate on the development of a luminous communication payload for an upcoming new mission that will be launched on the future Hellas Sat 5 telecommunications satellite, which will operate at 39 degrees east longitude.The partnership between Hellas Sat and Thales Alenia Sp...

    2024-01-30
    Ver traducción
  • Intel: Has acquired most of ASML's NA extreme ultraviolet lithography equipment in the first half of next year

    According to Korean media reports, Intel has acquired most of the high numerical aperture (NA) extreme ultraviolet (EUV) lithography equipment manufactured by ASML in the first half of next year.ASML plans to produce 5 high NA EUV lithography equipment this year, all of which will be supplied to Intel.They stated that ASML has an annual production capacity of approximately 5-6 High Numerical Apert...

    2024-05-21
    Ver traducción
  • New progress in research on laser cleaning and improving the damage threshold of fused quartz components at Shanghai Optics and Machinery Institute

    Recently, the research team of the High Power Laser Element Technology and Engineering Department of the Shanghai Institute of Optics and Mechanics, Chinese Academy of Sciences, has made new progress in the study of improving the damage threshold of fused quartz elements through laser cleaning. The study proposes for the first time the use of microsecond pulse CO2 laser cleaning to enhance the dam...

    2024-07-08
    Ver traducción