Español

Researchers have implemented a creative approach to reduce stray light using spatial locking technology based on periodic shadows

643
2023-10-16 10:40:33
Ver traducción

Reducing stray light is one of the main challenges in combustion experiments using laser beams (such as Raman spectroscopy) for detection. By using a combination of ultrafast laser pulses and gated ICCD or emICCD cameras, a time filter can be effectively used to remove bright and constant flame backgrounds. When the signal reaches the detector, these cameras can open electronic shutters within the time range of ps to ns. However, stray light from other sources still interferes with available signals, especially for low-frequency measurements.

Researchers around Andreas Ehn at Lund University have implemented a creative method to reduce stray light based on a spatial locking technique called periodic shadows. Although the concept of this measurement technique has been demonstrated before, Lund's researchers described in a recent paper that they "improved its feasibility, strength, and robustness" by implementing this method using fiber optic probes.

The experiment used a bundle of 19 optical fibers, which were arranged in a dense circular pattern on the signal collection side of the fiber, but in a linear pattern on the spectrometer side. Each fiber carrying the signal is followed by a dark fiber to generate appropriate fiber spacing along the entrance slit of the Isoplane SCT 320 spectrograph. The fiber pattern is approximated by a square wave function. At the exit of the spectrograph, use a fast gated PI-MAX4 ICCD camera to collect spectral images. The Isoplane spectrograph is an aberration correction system that can maintain high signal accuracy without distortion even in a large sensor area, which helps to reconstruct signals from collected images. The periodic structure of the analyzed signal is calculated column by column through Fourier transform, multiplication with the reference signal, and bandpass filter, which leads to a reduction in DC like offset like the stray light component on the detector.

The researchers further demonstrated the application of this technology in gas and premixed flame Raman spectroscopy. They not only indicate that the reconstructed signal provides a quantitative and accurate measurement of species mole fraction and temperature in the flame, but also that stray light is suppressed by almost two orders of magnitude (with a factor of 80). Their conclusion is that their concept is very valuable for accurate spectral measurements in experiments with limited optical channels.

Source: Sohu

Recomendaciones relacionadas
  • LAP launches CAD-PRO Xpert, an industrial laser projector using cutting-edge technology platforms

    LAP launched its latest version of the industrial laser projection system CAD-PRO Xpert at this year's JEC World. This innovation signifies the company's commitment to providing the most advanced laser engineering for various industries to achieve precise, efficient, and reliable laser guidance and positioning tasks, which is an important milestone.Redefining laser projection in the production pro...

    2024-03-07
    Ver traducción
  • The application of lasers in material processing has driven industrial progress in Santa Catalina state

    Laser material processing has been widely used in advanced industries, ranging from designing and producing lightweight, ultra wear-resistant parts and equipment with complex geometric shapes to repairing damaged or worn components through technologies such as 3D printing of deposited metal powders or deposits.Use laser pulses for surface treatment to prevent fatigue. But the impact of such techno...

    2023-09-26
    Ver traducción
  • Two photon absorption quantum mechanism breaks through the resolution and efficiency limits of optical nanoprinting

    Recently, a research team from the School of Physics and Optoelectronic Engineering at Jinan University has elucidated for the first time the time-dependent quantum mechanism of two-photon absorption and proposed a two-photon absorption (fpTPA) optical nanoprinting technology based on few photon irradiation, successfully breaking through the bottleneck of traditional two-photon printing technology...

    03-06
    Ver traducción
  • Technology Frontiers | What is the Next Generation Laser?

    Since the 1960s, lasers have brought revolutionary changes to the world and have now become an indispensable tool in modern applications, from cutting-edge surgical procedures and precision manufacturing to fiber optic data transmission. However, with the increasing demand for laser applications, challenges have also arisen. For example, the market for fiber lasers is constantly expanding, mainly ...

    2024-06-21
    Ver traducción
  • Dr. Gu Bo, a renowned expert in the laser industry, has been elected as a member of the Canadian Academy of Engineering

    On May 7, 2024, the official website of the Canadian Academy of Engineering announced that Dr. Gu Bo, a renowned expert in the laser industry, has been elected as a member of the Canadian Academy of Engineering.Dr. Gu BoAcademician of the Canadian Academy of EngineeringFounder/President of Bose Photonics, USADr. Gu Bo is recognized as a pioneer and academic leader in the global field of fiber lase...

    2024-05-07
    Ver traducción