Español

Progress in Calibration of Large Aperture Diffractive Lenses in the High Power Laser Physics Joint Laboratory of Shanghai Institute of Optics and Mechanics

491
2023-10-14 10:22:56
Ver traducción

Recently, the High Power Laser Physics Joint Laboratory of Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, proposed a single exposure interferometric calibration method for large aperture diffractive lenses, which provides strong support for the engineering application of large aperture diffractive lenses. The relevant achievements are published in Optics Letters as "Absolute measurement of focusing properties of a large aperture diffractive lens".

Compared to reflective focusing lenses, diffractive optical elements are designed flexibly, have a large aperture, are lightweight, suitable for various wavebands, and can achieve complex optical functions. Photonic sieves and zone plates are typical representatives of diffractive lenses. Considering that diffraction elements are composed of a large number of microstructures, deviations are inevitable during the machining process, so performance calibration is necessary before use.

In this study, researchers used the natural background light of a large aperture diffractive lens as a reference and entered the shear interference system together with the focused beam. Based on the interference pattern recorded by the detector, the wavefront gradient of the focused beam relative to the background light is first obtained using Fourier analysis, and then the transmitted wavefront is reconstructed using the mode method. Finally, the focal length and focal spot morphology of the diffractive lens are numerically calculated. The experimental results of a 210mm aperture diffractive lens meet theoretical expectations. Ultra large aperture zone plates and photon sieves can be used for space interferometric telescopes. The self supporting beam splitting photon sieve is suitable for focusing imaging of EUV and soft X-ray. Multi focal photon sieves can be used for X-ray interference diagnosis of plasma.

This work was supported by the National Natural Science Foundation of China and the Chinese Academy of Sciences' pilot A program.

Figure 1. Measurement Optical Path of Large Aperture Diffractive Lens

Figure 2. Experimental results of self-developed shear interferometer and measurement

Source: Shanghai Institute of Optics and Mechanics

Recomendaciones relacionadas
  • Oxford University develops technology for capturing strong laser pulses in one go

    Physicists at the University of Oxford have unveiled a “pioneering” method for capturing the full structure of ultra-intense laser pulses in a single measurement. The breakthrough, a collaboration with Ludwig-Maximilian University of Munich and the Max Planck Institute for Quantum Optics, could revolutionize the ability to control light-matter interactions, say the team.The Oxford announcement sta...

    07-07
    Ver traducción
  • Polish and Taiwan, China scientists are committed to new 3D printing dental implants

    Researchers from Wroclaw University of Technology and Taipei University of Technology in China are developing dental implants made from 3D printed ceramic structures connected to metal cores. Due to the use of biodegradable magnesium, bone tissue will gradually grow into such implants."The result will be a composite implant that can replace human teeth. Its scaffold is made of aluminum oxide...

    2024-04-17
    Ver traducción
  • The researchers used ultrafast lasers to create nanoscale photonic crystals

    The optical properties of photonic crystals are closely related to their lattice constants, which are usually required to be in the same order of magnitude as the operating wavelength. In a crystal material, the photonic crystal structure is formed by the periodic arrangement in space of units whose dielectric constant is different from that of the crystal itself, and whose lattice constant depend...

    2023-08-04
    Ver traducción
  • Stuttgart University researchers develop a new high-power 3D printed micro optical device for compact lasers

    Researchers from the Fourth Institute of Physics at the University of Stuttgart have demonstrated the feasibility of 3D printed polymer based micro optical devices in harsh laser environments.This study was detailed in the Journal of Optics, outlining the use of 3D printing technology to directly manufacture microscale optical devices on fibers, seamlessly integrating fibers and laser crystals int...

    2024-01-09
    Ver traducción
  • 3D printing giant Materialise reorganizes

    Recently, the stock price of Materialise, a well-known company in the 3D printing industry, plummeted by 35% overnight. This news was like a heavy bomb, instantly causing a storm in the industry! What exactly happened to Materialise, which was originally developing steadily? Why has there been such a significant drop in stock prices? Today, let's delve into the reasons behind this.The truth behind...

    03-03
    Ver traducción