Español

Trumpf laser uses artificial intelligence technology to improve welding quality

41
2025-07-11 10:34:21
Ver traducción

At last month’s LASER World of Photonics exhibition in Munich, Germany, industrial solutions and laser giant Trumpf presented a new materials processing laser system solution specified to improve welding processes.

The system combines several sensors that monitor all process steps during laser welding. An integrated AI quality control system checks the weld seams, for example, and OCT (optical coherence tomography) monitors the welding depth of the laser.


Solution for laser welding


Martin Stambke, Product Manager, explained, “Our solution is unique on the market. We are offering all components, such as the beam source, sensors, and optics, from a single source. We also take care of installation, service, and programming of the system, which is tailored to a user.”

The new solution enables users to weld precision components that must be free of defects, such as batteries for electric cars or hairpins for electric motors. To ensure flawless weld seams, the user must set the optimum working distance between the various components and the laser. This is enabled by the programmable PFO 33 focusing optics, which can adjust the focus position of the laser independently.

‘2.5D mode’
“This so-called 2.5D mode is more cost-effective in many applications than 3D mode, in which the PFO can still move up and down during the welding process. This is because less complex controls and programming, as well as fewer moving axes, reduce acquisition, operating, and maintenance costs for the user,” said Stambke.

“In addition, it is faster for the optics to adjust the focus position themselves than to move the entire optics up and down in the laser cell. Our solution is therefore cost-efficient, yet powerful,” he said.

Better weld seam quality from the very first component With integrated optical coherence tomography (OCT), users can not only monitor the welding depth of the laser, but also check the distance between the laser and the component.

“This ensures the focus position of the laser and prevents welding errors,” said Stambke. “Moreover, VisionLine Inspect is used to check the quality of the manufactured components. A camera takes a picture of the weld seam and the system uses AI to detect any potential errors. By combining AI preprocessing and conventional algorithms, we are creating traceability and transparency.”

Source: optics.org

Recomendaciones relacionadas
  • Xi'an Institute of Optics and Fine Mechanics has made significant progress in attosecond imaging research

    Recently, the Xi'an Institute of Optics and Fine Mechanics of the Chinese Academy of Sciences has made significant progress in attosecond imaging research, achieving high-resolution imaging of ultra wide spectrum light sources. The related results were published in the journal Photonics Research under the title "Snapshot coherent diffraction imaging across ultra wideband spectra".Figure 1. Demonst...

    2024-10-26
    Ver traducción
  • New super-resolution microscopy imaging technology: rapid imaging of neurons

    The research group led by Wang Kai from the Center for Excellence in Brain Science and Intelligent Technology of the Chinese Academy of Sciences has published a research paper titled "Super solution imaging of fast morphological dynamics of neurons in eating animals" online in Nature Methods. The team has developed a new type of super-resolution microscopy imaging technology, which solves the two ...

    2024-12-04
    Ver traducción
  • Aerotech's next-generation laser processing technology for medical device manufacturing

    Recently, Aerotech Inc., a global leader in precision motion control and automation, launched the ultimate cylindrical laser machining motion platform LaserTurn160. LaserTurn160 is designed for unparalleled precision and efficiency, with a 40% increase in production capacity compared to similar systems, setting a new standard for medical device manufacturing. Extremely high efficiency, unparalle...

    02-08
    Ver traducción
  • The researchers expect the EUV lithography market to grow from $9.4 billion in 2023 to $25.3 billion in 2028

    The researchers estimate the period from 2023 to 2028. EUV lithography will address the limitations of traditional optical lithography, which has reached its physical limits in terms of resolution. The shorter wavelength of EUV light allows for the creation of smaller features and tighter patterns on silicon wafers, enabling the manufacture of advanced microchips with greater transistor densities....

    2023-08-04
    Ver traducción
  • Veeco Instruments wins IBM big order

    On August 14th local time, Veeco Instruments, a well-known American laser annealing manufacturer, announced an important cooperation with technology giant IBM. It is reported that IBM has selected Veeco Instruments' WaferStorm wet processing system as support for its advanced packaging applications, and the two parties have signed a joint development agreement to explore the potential of utilizi...

    2024-08-23
    Ver traducción