Español

Laser surface treatment of Ti6Al4V alloy: finite element prediction of melt pool morphology and microstructure evolution

179
2025-04-10 11:08:27
Ver traducción

Researchers from the University of Calabria, University of Salento, and LUM University in Italy have reported on the progress of finite element prediction research on laser surface treatment of Ti6Al4V alloy: melt pool morphology and microstructure evolution. The related research was published in The International Journal of Advanced Manufacturing Technology under the title "Laser surface treatment of Ti6Al4V alloy: finite element analysis for predicting mole pool geometry and microstructure modifications".

This study systematically investigated the effect of laser surface treatment on Ti6Al4V titanium alloy through a combination of experiments and finite element analysis. The experiment used a fixed pulse frequency and average power, and process parameters with varying laser scanning speeds (30, 45, and 60 mm/s). The heat exchange coefficient of the numerical model was calibrated by real-time monitoring of the temperature field. Metallographic analysis shows a significant increase in hardness in the remelted zone, and X-ray diffraction confirms the formation of α - phase martensite (particularly evident during low-speed scanning). After experimental data calibration, the established 3D finite element model can accurately predict geometric features such as melt pool width and depth, and effectively characterize the influence mechanism of laser treatment on microstructure and mechanical properties. Research has shown that scanning speed is a key parameter in regulating the size of the melt pool and the behavior of phase transformation, which can significantly improve the hardness and wear resistance of alloys.


Figure 1 Metallographic analysis of laser treated surface cross-section (scanning speed 45mm/s)


Figure 2 Finite Element Modeling: Trajectory of Heat Source Movement and Subsurface Heat Field Distribution in the Cross Section of the Workpiece


Figure 3a) Gaussian heat source model b) DEFORM heat exchange window c) Calibration of heat source model parameters metallographic (30mm/s)


Figure 4 Calibration process for trial and error of heat exchange coefficient


Figure 5 Numerical simulation and experimental verification of laser surface heat treatment (45mm/s)

 


Figure 6 Finite element prediction of molten pool morphology (45mm/s)


Figure 7 Temperature gradient and remelting layer prediction (60mm/s)


Figure 8 XRD phase analysis (60mm/s)


Figure 9 Finite Element Thermal Gradient Prediction

 


Figure 10 Experimental simulation comparison of geometric dimensions of molten pool and prediction of remelted layer

 


Figure 11: The Influence of Scanning Speed on the Geometric Dimensions of the Molten Pool


This study comprehensively explores the effect of laser surface treatment on Ti6Al4V titanium alloy, with a focus on the influence of different laser scanning speeds on the microstructure and mechanical properties of the treated surface. This study reveals the regulatory mechanism of laser scanning speed on the surface microstructure and mechanical properties of Ti6Al4V titanium alloy:

1. Control of melt pool morphology: When the scanning speed increases from 30 to 60 mm/s, the melt depth decreases by about 65%, the melt width decreases by 30%, and the thickness of the remelted layer changes relatively smoothly. This is attributed to the fact that high-speed scanning shortens the laser material interaction time and limits energy input.

2. Hardness strengthening mechanism: The nano hardness in the remelted zone is increased by 24-30% compared to the matrix, and XRD confirms that the formation of α - phase martensite is the main cause. The supersaturated phase originates from the high-temperature quenching characteristics of laser treatment, and the surface Ti oxide layer further strengthens the hardening effect.

3. Model validation: The finite element model based on SFTC DEFORM-3D is highly consistent with experimental data in predicting the geometric dimensions of the melt pool, melt depth, and remelted layer thickness, successfully reproducing the temperature gradient and phase transformation behavior during the processing.

The experimental numerical joint analysis method established in this study provides a reliable tool for optimizing laser surface treatment processes, which helps to improve the mechanical properties and corrosion resistance of Ti6Al4V alloy in industrial applications. The research results have deepened the understanding of laser surface modification technology and have guiding significance for improving the performance of titanium alloy components in aerospace, biomedicine and other fields.

Source: Yangtze River Delta Laser Alliance

Recomendaciones relacionadas
  • Lameditech of South Korea was listed on the KOSDAQ exchange on the 17th

    On June 11, 2024, Korean laser medical equipment manufacturer Lameditech successfully completed its initial public offering and was listed on the KOSDAQ exchange on the 17th.Last month, its public offering price was fixed at 16000 Korean won. In this public offering, Lameditech issued a total of 1298000 shares, raising approximately 20.8 billion Korean won. Since Lameditech's debut on KOSDAQ, as o...

    2024-06-26
    Ver traducción
  • Wearable Breakthrough! A rubber like deformable energy storage device using laser precision manufacturing

    Recently, foreign researchers have made remarkable breakthroughs in the field of flexible energy storage devices, successfully developing a small energy storage device that can stretch, twist, fold, and wrinkle freely. This significant achievement has been published in the journal npj Flexible Electronics.With the booming development of wearable technology, the demand for energy storage solutions ...

    2024-04-26
    Ver traducción
  • Switzerland's top 100 sales drop to 330.9 million Swiss francs in the first half of the year

    Recently, Swiss company Bystronic disclosed its financial performance for the first half of 2024.The financial report shows that the market situation for the Swiss Super 100 in the first half of 2024 remains very tense. Customers in various end markets are unable to fully utilize their production capacity, and operations in all regions are relatively cautious.Despite Swiss supercar actively reduci...

    2024-07-24
    Ver traducción
  • BOFA launches the latest generation of high-temperature 3D printing filtration technology

    BOFA has consolidated its position as a market leader in additive manufacturing of portable smoke and particle filtration systems with the latest generation of 3D PrintPRO technology designed specifically for high-temperature processes.3D PrintPRO HT focuses on the 230V market and can filter high-temperature particles, gases, and nanoparticles emitted during polymer processing in the printing room...

    2024-04-15
    Ver traducción
  • Shanghai Institute of Optics and Mechanics proposes a new scheme of Er doped silicate fiber as an extended L-band broadband amplifier

    Recently, Hu Lili, a research group of the Advanced Laser and Optoelectronic Functional Materials Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, proposed a new scheme based on field strength optimization of Er doped silicate fiber as an extended L-band broadband amplifier. Relevant research achievements were published in Optics Letters under the tit...

    2024-06-05
    Ver traducción