Español

Scientists develop flat-topped laser beams to overcome Gaussian distribution limitations

220
2023-08-04 16:39:10
Ver traducción

The beam emitted by almost all laser systems follows the Angle pattern of Gaussian distribution. The Gaussian irradiance distribution means that irradiance has a smooth peak at the center point and slowly declines toward the edge. In theory, the irradiance level of a Gaussian distribution can never reach zero, which means that the distribution can expand indefinitely. This phenomenon in the laser beam results in a large amount of light energy being wasted. However, for a variety of practical applications, we need a laser beam system that minimizes light energy waste. To solve this problem, flat-topped laser beams have been developed to overcome the limitations of Gaussian distribution and provide a beam distribution with sharp edges and uniform irradiance.

The role of DOE in beam shaping

Since a laser beam naturally does not exhibit a flat-topped beam profile, we need to convert a Gaussian beam to a flat-topped beam using an add-on or a beam shaper. This modification enables the beam profile to be used for a variety of laser applications. Analytical beam shaper and diffuser Beam shapers are the two main types of flat-top laser beam shapers.

 

A DOE (or diffractive Optical element) is an analytical beam shaper consisting of a single element designed to change the wavefront of a beam. DOE is a computer-generated hologram (CGH) combined with a specific delay topology that exploits the properties of light waves. The structure of the DOE can be designed to perform complex changes to coherent beams, such as laser beams.

 

Diffractive optical elements (DOE) introduce precise phase transitions for the beam. As the beam propagates, this phase transition produces a smooth, flat-topped irradiance distribution at the focal point. The shape of the profile can be customized on request, such as round, square, rectangular or straight.

 

Therefore, the main advantage of using such beam shapers is their excellent performance in terms of coherent beams such as TEM00 Gaussian beams with low M2 values. This type of input coherent beam has important applications in the laser material processing industry. In contrast, the use of diffuse elements as beam shapers is common in multi-mode, low-coherence laser beams.

 

DOE beam shaper Settings

The setup of the beam shaper consists of a laser beam entering the DOE and a focusing lens (such as an F-Theta lens) placed behind the DOE. The aim is to reproduce the far field of DOE in the focal plane. The beam shaper performs best when the through-light aperture of the lens is twice or more that of the DOE and the lens has no aberrations.

 

Application field

Flat-topped laser beam profiles have important applications in various industries such as semiconductors and microelectronics, where these beam irradiance profiles can be used for tasks such as drilling, copper removal, and contact scribing. The top hat laser beam also has important applications in high-tech manufacturing, green energy industry, especially laser metal processing industry.

 

Source: Laser Network

Recomendaciones relacionadas
  • NASA will demonstrate laser communications on the space station to improve space communications capabilities

    Recently, in order to improve the National Aeronautics and Space Administration (NASA) space communications capabilities, NASA plans to send a technology demonstration called "Integrated LCRD Low Earth Orbit User Modem and Amplifier Terminal (ILLUMA-T)" to the space station in 2023.ILLUMA-T and the Laser Communications Relay Demonstration (LCRD), launched in December 2021, will together comp...

    2023-09-04
    Ver traducción
  • This perovskite solar cell laser equipment company has received another round of financing

    Recently, Lecheng Intelligent Technology (Suzhou) Co., Ltd. (hereinafter referred to as "Lecheng Intelligent") completed a strategic financing round of tens of millions of yuan, which is exclusively invested by Dongfang Fenghai Capital. The financing funds will mainly be used for technology research and development, laboratory construction, and talent recruitment.This is the second round of financ...

    2023-10-10
    Ver traducción
  • DataLase launches a new laser active transparent to white coating

    Laser coding and marking technology expert DataLase has launched a series of new colorless to white coatings for a range of packaging applications.These coatings are centered around biodegradable and sustainably sourced raw materials, providing high contrast white printing even on difficult substrates such as 12 micron PET and shrink film, under the weight of flexographic and gravure coatings. Thi...

    2024-03-09
    Ver traducción
  • Laser Photonics, the "dark horse" of laser cleaning, plans to build a new factory of nearly 50000 square meters in North America

    On July 2nd local time, Laser Photonics, the dark horse of laser cleaning, announced a major expansion plan: to build a modern new factory covering an area of 50000 square feet (approximately 4645.152 square meters) in Lake Mary, Florida, USA.This expansion marks a firm manifestation of Laser Photonics' confidence in the sustained growth of the North American and even global markets, and also sig...

    2024-07-04
    Ver traducción
  • Ecken develops a new type of iron silicon powder for 3D printing of motors

    Through the SOMA project funded by the European Union, organic silicon material expert Aiken has collaborated with research partners and clients to develop a new specialized iron silicon powder that can more efficiently 3D print motor components.Yesterday's electric motor was usually made by cutting and shaping parts from a metal plate. 3D printing can fundamentally improve efficiency and...

    2024-01-20
    Ver traducción