Ελληνικά

Focused Energy purchases two world-class high-energy lasers

798
2024-12-25 14:45:23
Δείτε τη μετάφραση

Recently, Focused Energy, a well-known foreign fusion energy startup, announced that it has officially signed an agreement to purchase two of the world's top high-energy lasers. These two large lasers will be deployed in the company's upcoming factory in the San Francisco Bay Area in the next two years.

Scott Mercer, CEO of Focused Energy, stated, "These lasers are currently the highest average power devices in the private sector, each capable of releasing over 1 kilojoule of energy towards targets, with a total investment of nearly $40 million.

The most advanced inertial restraint system currently available is located at the National Ignition Facility of the US government, which announced a breakthrough in "net gain" two years ago. There, physicists can conduct approximately 300 "shots" each year to study nuclear fusion. This is far below the demand of commercial nuclear fusion power plants. For example, the goal of 'concentrating energy' is to shoot 10 times per second.

The two new lasers from Focused Energy will be able to emit once per minute, although this is partly due to the active development of devices supporting them.

Doug Hammond, Vice President of the Laser Engineering Department of the company, further explained, "These subsystems are important demonstrations of the technology we need to build the final fusion pilot factory." He emphasized that the high-energy main amplifier is still under parallel development because such products do not yet exist in the market.

These lasers are not only a key part of the technology demonstration, but also fully customized and manufactured by Amplitude Lasers, a well-known ultrafast laser company in France. Each laser system covers an area of approximately 1600 square feet, equivalent to the size of a small residential building. Damien Buet, CEO of Amplitude Lasers, explained, "One of the reasons we haven't mass-produced such a large laser is that there isn't a significant demand in the market at the moment.

However, if Focused Energy can achieve its milestone goals, this situation may change. The commercial power plants designed by the company each require thousands of lasers. Buet pointed out, "The number of diodes required for a factory will far exceed the current global maximum production capacity. We need to expand the entire supply chain.

In order to ensure sufficient ignition energy and operational reliability of the power plant (even when some lasers require maintenance or replacement), the main challenge faced by Focused Energy is construction speed. Scott Mercer said, "Our target is 2035. The key is how quickly we can start mass producing lasers.

He added, "Even connecting a traditional power plant to the grid within 10 years is a highly challenging goal today
The kilojoule level laser of Amplitude Lasers is designed to test the physical properties required for effective direct drive compression of deuterium tritium fusion fuel targets. They will run at a high repetition rate of once every 60 seconds, enabling rapid design iterations.
This research was supported and funded by the German Federal Breakthrough Innovation Agency (SPRIND).

This three-year development plan will begin at the Amplitude Lasers Lisses facility near Paris in early 2025, building on the global momentum of inertial fusion energy triggered by the National Ignition Facility (NIF) fusion ignition breakthrough in December 2022. This initiative places the amplitude at the forefront of global development of clean energy solutions, utilizing cutting-edge laser technology to improve the parameters of inertial confinement fusion and advance the commitment to sustainable energy production.

We are seeking a nuclear fusion method called inertial confinement, in which several laser beams converge to compress fuel particles, causing their internal matter to fuse and release energy. This technology has demonstrated for the first time that net positive nuclear fusion power generation is possible, although there are still significant obstacles to overcome.

Source: OFweek

Σχετικές προτάσεις
  • Hyperspectral imaging technology: a comprehensive guide from principles to applications

    Hyperspectral imaging technology is a highly anticipated innovation in the field of science and engineering today. It not only integrates spectroscopy and imaging technology, but also has wide applications in various industries and research fields. This article will delve into the basic principles, working mechanisms, and applications of hyperspectral imaging in different fields.Introduction to hy...

    2024-04-16
    Δείτε τη μετάφραση
  • Upgrading 3000W fiber laser to high energy and miniaturization has become a new trend

    Recently, the discussion on "miniaturization" in the domestic laser industry has become increasingly heated. From various exhibition venues, miniaturization and lightweight have become important display directions for fiber laser manufacturers.High energy and miniaturization have become new trendsIn the past few years, high-power has undoubtedly been the main development direction in the field of ...

    2023-09-20
    Δείτε τη μετάφραση
  • The Japanese team uses laser technology for ice core sampling to accurately study climate change

    Recently, a research team from the Astronomical Glaciology Laboratory under the RIKEN Nishina Center (RNC) of the Japanese Institute of Physics and Chemistry announced that they have developed a new laser based sampling system for studying the composition of glacier ice cores.The above image shows the discrete holes sampled 150mm from the shallow ice core of the Fuji Ice Dome in Japan (Southeast ...

    2023-09-23
    Δείτε τη μετάφραση
  • Single photon avalanche diode detector enables 3D quantum ghost imaging

    A team of researchers at the Fraunhofer Institute for Optoelectronics, Systems Technology and Image Development and Karlsruhe Institute of Technology are using single-photon avalanche diode (SPAD) arrays to achieve three-dimensional (3D) quantum ghost imaging.The new method, called "asynchronous detection," produces the lowest photon dose of any measurement and can be used to image light-sensitive...

    2023-09-06
    Δείτε τη μετάφραση
  • Innovative laser technology: a novel quantum cavity model for superradiance emission

    Quantum optics is a complex field where theoretical and experimental physicists collaborate to achieve breakthroughs in explaining subatomic level phenomena.Recently, Farokh Mivehvar from the University of Innsbruck used the most comprehensive model in quantum optics, the Dicke model, to study the interaction between two groups of atoms in a quantized field. This new study makes it possible to obs...

    2024-03-16
    Δείτε τη μετάφραση