Ελληνικά

Lockheed Martin announces expansion of 16000 square feet 3D printing center

322
2024-12-02 14:02:05
Δείτε τη μετάφραση

Recently, US military industry giant Lockheed Martin announced that it will significantly increase its additive manufacturing capabilities and expand its factory in Texas. The expansion project includes approximately 16000 square feet of dedicated space for 3D printing technology, and the addition of some of the largest large format multi laser printers in the space (it is worth noting that Lockheed Martin emphasized the purchase of NXG XII equipment from Nikon SLM instead of Velo 3D, which it cooperates with on hypersonic missile projects), as well as advanced heat treatment and testing equipment. This setup aims to significantly enhance the rapid development and production of additive manufacturing parts in Lockheed Martin's operations.

We will continue to invest in additive manufacturing technology to provide value to our customers, enabling our engineers to innovate and quickly integrate new product designs and features into production workshops, "said Tom Carrubba, Vice President of Production Operations at Lockheed Martin Missiles and Fire Control. This enables us to create cost-effective modular designs that simplify both large and small batch production processes.

This 3D printing technology space expansion is part of Lockheed Martin's 1LMX digital transformation plan. 1LMX is Lockheed Martin's mission driven business and digital transformation program, in which Lockheed Martin will transform end-to-end business processes and systems, and create a model-based enterprise with fully integrated digital threads throughout the entire product lifecycle. The program aims to incorporate additive manufacturing into the early stages of product development. According to Hector Sandoval, a researcher at Lockheed Martin, this integration is a tool to reduce technical risks, improve product performance, and shorten development and delivery time.

Using this state-of-the-art large-scale platform additive manufacturing technology at Lockheed Martin enables us to quickly iterate and manufacture all of our products, saving costs and achieving design freedom for all of our customers, "said Brian Kaplun, a researcher at Lockheed Martin. Additive manufacturing lives in the digital world, which allows us to provide support to customers in a more flexible and responsive way than using traditional design and manufacturing methods.

3D Printing Applications
For decades, Lockheed Martin has been improving its additive manufacturing process to enable the company to deliver systems with higher speed, agility, innovation, and competitiveness. In terms of additive manufacturing applications, Lockheed Martin has redesigned hydraulic manifolds traditionally made from large aluminum blocks. By utilizing the design freedom provided by additive manufacturing, the team is able to create more direct and efficient paths between hydraulic connections, thereby improving performance while significantly reducing weight.

The aluminum manifold processed once is redesigned for 3D printing
The company will also extend the application of additive manufacturing to its various products, including the multi mission Mako hypersonic missile, where additive manufacturing is used to produce guidance shells and tail wing components. This method not only meets strict requirements, but also costs and time are only a small part compared to traditional subtractive manufacturing methods.

The ongoing Mako hypersonic missile operation
Lockheed Martin is also applying additive manufacturing in its traditional projects, such as printing components for the F-35 simulator cockpit and GMLRS. The combination of model-based engineering methods and expertise in additive manufacturing enables the company to redesign the GMLRS antenna assembly testing unit, thereby reducing the number of parts and lowering costs and production time.

Investment in the field of 3D printing
Lockheed Martin not only deploys additive manufacturing in its own operations, but also actively influences the broader 3D printing and manufacturing industry through investments, acquisitions, and other means.

In December 2022, Lockheed Martin completed a strategic investment in Sintavia, an advanced thermodynamic component additive design company and manufacturer for the aerospace and defense industries, in response to President Joe Biden's "AM Forward" initiative launched at the White House in May 2022. AM Forward is a fully voluntary agreement aimed at strengthening the US supply chain by supporting US suppliers in adopting and deploying additive manufacturing.

In February 2023, Lockheed Martin announced an equity investment in American aviation motor company H3X. Lockheed Martin will actively assist H3X in developing highly integrated modular aviation motor systems, with the goal of providing the required motor power density and corresponding fault tolerance for 50 to 100 seat aircraft.

In June 2023, Lockheed and Raytheon invested $12.5 million in 3D printing company Fortify. Fortify is a startup company specializing in 3D printing of polymer composite materials. The company's expertise demonstrated in collaboration with various departments of Lockheed Martin, including radar missile guidance, fighter jets, drones, etc., has successfully transformed Lockheed and Raytheon from Fortis' largest customers to investors.

In addition, in August 2024, Lockheed Martin announced a major acquisition of Terran Orbital for $450 million, aimed at revolutionizing satellite manufacturing. Terran Orbital is the first to use 3D printing to produce satellites that are lighter, stronger, and more efficient than traditional methods.

Source: Yangtze River Delta Laser Alliance

Σχετικές προτάσεις
  • Northeastern University of Japan: Breakthrough Laser Technology for Nanoscale Laser Processing

    In the fields of optics and micro/nano processing, precise manipulation of lasers to meet the growing demand for miniaturization is an important challenge in driving the development of modern electronic and biomedical equipment. Recently, researchers from Tohoku University in Japan successfully demonstrated the use of interference technology to enhance the longitudinal electric field of radially p...

    2024-04-12
    Δείτε τη μετάφραση
  • Hyperspectral imaging technology: a comprehensive guide from principles to applications

    Hyperspectral imaging technology is a highly anticipated innovation in the field of science and engineering today. It not only integrates spectroscopy and imaging technology, but also has wide applications in various industries and research fields. This article will delve into the basic principles, working mechanisms, and applications of hyperspectral imaging in different fields.Introduction to hy...

    2024-04-16
    Δείτε τη μετάφραση
  • Teledyne Technologies acquires a portion of its optoelectronic business

    Recently, Teledyne Technologies announced that it has reached an agreement to acquire a portion of Excelitas Technologies' aerospace and defense electronics business for $710 million in cash.This acquisition includes the optical systems business under the Qioptiq brand headquartered in North Wales, UK, as well as the Advanced Electronic Systems (AES) business headquartered in the United States.It ...

    2024-11-12
    Δείτε τη μετάφραση
  • Southern Stoneworks revolutionizes countertop installation in Orlando with innovative laser technology

    A good countertop can make a home better. In that spirit, Southern Stoneworks, Orlando's leading countertop manufacturer and installer, has set a new standard in the industry by incorporating advanced laser technology into its processes. Utilizing state-of-the-art laser-guided saws and tools, the company has significantly reduced the time required to measure, manufacture, and install kitchen count...

    2023-08-04
    Δείτε τη μετάφραση
  • Scientists have developed the most powerful ultraviolet laser using LBO crystals

    It is reported that recently researchers from the Chinese Academy of Sciences have achieved the highest power output of 193 nm and 221 nm lasers using lithium borate (LBO) crystals. This achievement lays the foundation for the further application of the laser in deep ultraviolet (DUV) spectroscopy.The laser in DUV spectroscopy has many applications in science and technology, such as defect detecti...

    2024-04-07
    Δείτε τη μετάφραση