Ελληνικά

New type of metasurface with adjustable beam frequency and direction

228
2024-07-30 10:21:02
Δείτε τη μετάφραση

Recently, according to the journal Nature Nanotechnology, a team from the California Institute of Technology reported that they have constructed a metasurface covered with micro adjustable antennas that can reflect incident light beams: one beam of light enters and multiple beams of light exit, each with a different frequency and propagating in a different direction. This is a new method for processing free space signals rather than fiber optic signals, which can create many sidebands or channels with different optical frequencies.

When many people share the same Wi Fi network, the network may experience latency or lag. But if everyone had a dedicated wireless communication channel, it would be hundreds of times faster and bandwidth increased than the Wi Fi we use today. The new research is not only expected to be used for developing new wireless communication channels, but also opens up new avenues for developing new ranging technologies or transmitting large amounts of data into space.

Researchers have constructed a metasurface covered with micro adjustable antennas that can reflect incident light beams, creating many sidebands or channels of different optical frequencies.

The research team stated that the design of metasurfaces aims to surpass the effects that traditional optical components such as cameras or microscope lenses can achieve. This multi-layer crystal tube like device is called a "spatiotemporal metasurface", which adopts carefully selected nanoscale antenna pattern design to change the response of light, and can reflect, scatter or otherwise control light, such as reflecting light in a specific direction and at a specific frequency.

The core width and length of the device are both 120 microns, and the wavelength of the light wave used when operating in reflection mode at the optical frequency is 1530 nanometers, which is thousands of times higher than the frequency of radio waves, meaning that the available bandwidth is much larger.

The research team suggests that these metasurfaces could be used in the field of LiDAR, where light can be used to capture depth information of three-dimensional scenes. The ultimate goal of the team is to develop a 'universal metasurface' that can create multiple optical channels in free space, with each channel transmitting information in a different direction. They envision that in the future, when many people use laptops in the same coffee shop, everyone will no longer receive wireless Wi Fi signals, but instead receive their own high fidelity beam signals, and no longer have to worry about internet speed issues.

Source: Science and Technology Daily

Σχετικές προτάσεις
  • A new type of electrically driven organic semiconductor laser can be used in the fields of spectroscopy, metrology, and sensing

    According to a report from Maims Consulting, scientists at the University of St. Andrews in the UK recently stated that they have made a "significant breakthrough" in the decades of challenges in developing compact organic semiconductor laser technology.Firstly, an OLED with a world record light output was manufactured, and then integrated with a polymer laser structure. This new type of las...

    2023-10-07
    Δείτε τη μετάφραση
  • The use of laser equipment to recover refractory materials can reduce 800,000 tons of carbon dioxide emissions

    Refractory material can withstand high temperature above 1500℃. They are essential materials for industrial furnaces that produce glass or ceramics, non-ferrous metals and steel. The service life of manufactured refractory products can range from a few days to many years, depending on the material, the temperature in the melting vessel and other operating parameters. As a result, although ...

    2023-09-04
    Δείτε τη μετάφραση
  • Coherent lasers will help expand the scale of fusion tokamaks

    Coherent company's excimer lasers can be more widely used in fusion reactor applications, after the US based photonics giant signed a "letter of intent" with Japan's Faraday 1867 Holdings.Faraday 1867, headquartered in Kanagawa Prefecture, is said to have become the world's leading manufacturer of high-temperature superconducting (HTS) tape through its subsidiary Faraday Japan factory.This tape is...

    2023-10-11
    Δείτε τη μετάφραση
  • Breakthrough 8-channel 915nm SMT pulse laser, ushering in a new era of laser radar applications

    The 8-channel 915nm SMT pulse laser can enhance the long-range laser radar system of autonomous vehicle;An 8-channel QFN package certified by AEC-Q102, featuring high performance and efficiency, utilizing proprietary wavelength stabilization technology from AMS Osram;Based on over 20 years of experience in pulse laser technology.Shanghai, China, August 8, 2024- AMS, a leading global optical soluti...

    2024-08-09
    Δείτε τη μετάφραση
  • Laser&Photonics Reviews New Type Quartz Crystal Space Harmonic Modulation for Efficient Vacuum UV Laser

    Professor Zhang Huaijin and Yu Haohai from the Institute of Crystal Materials of Shandong University (the State Key Laboratory of Crystal Materials) proposed a spatial harmonic modulation strategy, which realizes the phase matching conditions that can be manipulated artificially in the new quartz crystal, and realizes the effective frequency doubling within the VUV range. The relevant research is ...

    2023-08-30
    Δείτε τη μετάφραση