Ελληνικά

Microscopic Marvel photon devices have the potential to completely change the way physics and lasers are processed

203
2024-06-04 15:20:04
Δείτε τη μετάφραση

Researchers at Rensselaer Institute of Technology have developed a device that operates at room temperature, which is the first topological quantum simulator to operate under strong light matter interaction mechanisms, making high-tech research easier in cutting-edge ways.

Researchers at Rensselaer Institute of Technology have developed a device no larger than human hair, which will enable physicists to explore the fundamental concepts of matter and light. This study, published in the journal Nature Nanotechnology, can also help researchers develop more efficient lasers that are being used in a range of fields such as medicine and manufacturing.

This device is composed of a specific material called photonic topological insulator, which can guide photons (wave shaped particles formed into light) to specially designed interfaces without dispersing them in the material.

Topological insulators can simulate the behavior of multiple photons in a coherent manner, enabling them to act as micro laboratories to study quantum phenomena at very small scales.

Professor RPI and senior author of Natural Nanotechnology, Wei Bao, pointed out that our photonic topological insulator is a significant breakthrough in the field of fundamental physics. Its unique design allows materials to operate at room temperature, which was previously a challenge due to expensive equipment.

Our progress in energy-saving lasers has led to a seven fold increase in energy demand for room temperature equipment, which is much higher than previously developed low-temperature equipment.
RPI scientists have designed a new mechanism that utilizes the same techniques as in semiconductor manufacturing, involving atomic and molecular layers to create appropriate structures.

Our progress in energy-saving lasers has led to a seven fold increase in energy demand for room temperature equipment, which is much higher than previously developed low-temperature equipment.

RPI scientists have designed a new mechanism that utilizes the same techniques as in semiconductor manufacturing, involving atomic and molecular layers to create appropriate structures.

The device was manufactured by researchers who grew ultra-thin plates of halide perovskite, a crystal containing cesium, lead, and chlorine, and produced a polymer on it. They sandwiched these crystal plates and polymers between thin sheets of different oxide materials to create an object approximately 2 microns thick and 100 microns wide, which is roughly the same length and width as ordinary human hair.

When researchers applied lasers to devices, they observed a triangular pattern that lit up at the interface designed in the material. This mode is caused by the topology characteristics of the laser determined by the device design.

Shekhar Garde, Dean of the RPI School of Engineering, emphasized the prospects of studying quantum phenomena at room temperature.
The study of atmospheric carbon capture in the Mesozoic volcanic regions of central China is the main topic discussed in Nature Nanotechnology. The title of this paper is "The Cohesive Phenomenon in Topological Valley Halls".
Funding from the National Science Foundation and the Office of Naval Research has played an important role in funding this research.

Source: Laser Net

Σχετικές προτάσεις
  • Credo launches the world's first 800G DSP for linear receiving optical devices, targeting ultra large scale and artificial intelligence data centers

    Credo Technology Group Holding Ltd announced today the launch of the industry's first Dove 800 850G digital signal processor IC, which has been optimized for linear receiving optical devices and is also known as semi retiming linear optical devices in the industry. In LRO transceivers or active optical cables, only the transmission path from the electrical input to the output of the optical path i...

    2023-11-30
    Δείτε τη μετάφραση
  • Based on Transform Optics: Realizing an Ideal Omnidirectional Invisible Cloak in Free Space

    A team led by Professor Ye Dexin and Professor Chen Hongsheng from Zhejiang University, as well as Professor Yu Luo from Nanyang University of Technology, conducted practical research on full parameter transformation optical devices. The research team has designed and implemented an all parameter omnidirectional invisibility cloak based on the theory of linear transformation optics and omnidirecti...

    2024-04-29
    Δείτε τη μετάφραση
  • New super-resolution microscopy imaging technology: rapid imaging of neurons

    The research group led by Wang Kai from the Center for Excellence in Brain Science and Intelligent Technology of the Chinese Academy of Sciences has published a research paper titled "Super solution imaging of fast morphological dynamics of neurons in eating animals" online in Nature Methods. The team has developed a new type of super-resolution microscopy imaging technology, which solves the two ...

    2024-12-04
    Δείτε τη μετάφραση
  • Focusing on the headquarters of Kuaidiqin Gen, a place of innovation and prosperity

    Have you ever imagined finding exquisitely designed and vibrant buildings in an industrial park? The headquarters of Deutschengen in Germany is such a place that combines creativity and practicality.Carefully planned and focused sustainable architecture combines design and functionality, showcasing the best appearance of industrial architecture and a vivid practice of its corporate spirit and valu...

    2024-04-28
    Δείτε τη μετάφραση
  • Shanghai Optics and Machinery Institute has made progress in femtosecond fiber lasers based on twisted Sagnac interferometer mode locking

    Recently, the research team of the Aerospace Laser Technology and System Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, proposed a torsional Sagnac interferometer and applied it to the fiber laser system, realizing mode locking self starting and pulse shaping. The relevant research achievements were published in the Journal of Lightwave Technology u...

    2024-04-22
    Δείτε τη μετάφραση