Ελληνικά

Accurate measurement of neptunium ionization potential using new laser technology

167
2024-05-11 16:42:14
Δείτε τη μετάφραση

Neptunium is the main radioactive component of nuclear waste, with a complex atomic structure that can be explored through mass spectrometry. This analysis is crucial for understanding its inherent characteristics and determining the isotopic composition of neptunium waste. Magdalena Kaja and her team from Johannes Gutenberg University in Mainz, Germany have developed a novel laser spectroscopy technique that can more accurately measure the ionization potential of neptunium compared to previous methods.

Neptunium is an actinide metal in the periodic table adjacent to uranium, with an atomic number of 93. The inspiration for its name comes from Neptune, located outside of Uranus in the solar system, which is a recognition of its position. Among the 25 known isotopes, most have extremely short lifetimes. However, the most stable isotope, neptunium 237 (237 Np), has a half-life of over 2 million years, making it a particularly dangerous nuclear pollutant.

The neptunium isotope samples available for this type of analysis are very small: they typically only contain a few atoms of the isotope.


Magdalena Kaja and her colleagues utilized a cutting-edge device that includes solid-state titanium: sapphire laser systems, enhanced laser ion sources, and high transmittance mass separators. This advanced equipment has played an important role in their research on neptunium.

The research team used this technique to measure the first ionization energy of neptunium, which is the energy required to remove the first electron from the outermost electron shell to form a positive ion. They accurately determined the value to be 6.265608 (19) eV. This measurement is not only consistent with the values previously reported in scientific literature, but also achieves an accuracy level more than ten times higher than any previous measurement.

This method can also be applied to the analysis and detection of trace amounts of neptunium in radioactive waste.

Source: Laser Net

Σχετικές προτάσεις
  • TRUMPF machine cooler saves 50 percent energy

    Ditzingen, 05. March 2025 – At its in-house exhibition INTECH, high-tech company TRUMPF is showcasing a new cooler for its laser cutting machines. The new unit is capable of reducing energy consumed during the cooling process and uses fifty percent less energy than conventional solutions. Unlike conventional coolers, the main components of this new solution— such as pumps, fans and compressors— ar...

    03-14
    Δείτε τη μετάφραση
  • Using laser controlled filaments in vanadium dioxide to enhance neural morphology calculations

    In a new "Progress in Science" study, scientists from the University of Science and Technology of China have developed a dynamic network structure for neural morphology calculations using laser controlled conductive wires.Neuromorphic computing is an emerging research field that draws inspiration from the human brain to create efficient and intelligent computer systems. The core of neuromorphic co...

    2023-10-13
    Δείτε τη μετάφραση
  • Theoretical physicist Farok Miwivar studied the interaction between two sets of luminescent atoms in a quantum cavity

    Theoretical physicist Farok Miwivar studied the interaction between two sets of luminescent atoms in a quantum cavity - a quantum cavity is an optical device composed of two excellent small mirrors that can capture light in a small area for a long time.This model and its predictions can be used for the next generation of superradiance lasers. They can be used and observed in cutting-edge cavity/wa...

    2024-02-21
    Δείτε τη μετάφραση
  • Industrial blue light laser developer Nuburu adds new director

    Not long ago, Nuburu, the developer of industrial blue light lasers, encountered a personnel change controversy. The departure of two senior executives from its board of directors resulted in a shortage of board members, and the originally scheduled special meeting for financing proposals was forced to be cancelled as a result. Recently, Nuburu announced two new director appointments that will tak...

    01-10
    Δείτε τη μετάφραση
  • Measurement of spectral line intensity of NO2 near 6.2 microns using a quantum cascade laser spectrometer

    Recently, a joint research team from the Key Laboratory of Optoelectronic Information Acquisition and Processing of Anhui University, the Laboratory of Laser Spectroscopy and Sensing of Anhui University, and Ningbo Haier Xin Optoelectronic Technology Co., Ltd. published a paper titled "Measures of line strengths for NO2 near 6.2" μ Research paper on using a quantum cascade laser spectrometer.Re...

    2024-01-02
    Δείτε τη μετάφραση