Ελληνικά

This innovation will significantly improve the sensitivity of gravitational wave detectors

553
2024-04-17 16:23:40
Δείτε τη μετάφραση

In 2017, the detection of gravitational waves generated by the merger of binary neutron stars marked a significant breakthrough in physics. These waves reveal important information about the universe, from the origin of short gamma ray bursts to the formation of heavy elements.

However, capturing gravitational waves from the merged residue remains a challenge as these waves avoid the detection range of the current detector. However, they can illuminate the internal structure of neutron stars.

The solution may lie in amplifying signals through optical springs and simulating spring behavior using the radiation pressure of light. The Tokyo Institute of Technology's Japan research group, led by associate professors Kentaro Somiya and Dr. Sotatsu Otabe, has proposed an innovation: Kerr effect enhanced optical springs.

In order to make the system more sensitive without requiring more energy, researchers used special techniques in optical equipment. They introduced a material called Kerr medium. This material has a unique characteristic of changing the refractive index of light.

Due to this feature, the device can act as a harder optical spring, thereby enhancing its ability to respond to very subtle changes (such as those caused by gravitational waves) without consuming more energy. Tests have shown that this method increases the hardness of lightweight springs by 1.6 times, enabling the device to detect changes at higher frequencies (from 53 Hz to 67 Hz).

This progress paves the way for the next generation of gravitational wave detectors, which can detect elusive waves to date and provide us with an additional key to understanding the composition of the universe. The proposed design is easy to implement and introduces adjustable parameters into the optomechanical system.

Source: Laser Net

Σχετικές προτάσεις
  • Progress in Research on Intervalley Scattering and Rabi Oscillation Driven by Coherent Phonons

    Two dimensional transition metal chalcogenides have multi valley structures in their energy bands, giving them electron valley degrees of freedom, making them an ideal platform for studying multi body interactions. As the main mechanism of valley depolarization, the valley scattering process of free electrons or bound excitons is crucial for exploring excited state electron phonon interactions and...

    2023-10-10
    Δείτε τη μετάφραση
  • Laser&Photonics Reviews New Type Quartz Crystal Space Harmonic Modulation for Efficient Vacuum UV Laser

    Professor Zhang Huaijin and Yu Haohai from the Institute of Crystal Materials of Shandong University (the State Key Laboratory of Crystal Materials) proposed a spatial harmonic modulation strategy, which realizes the phase matching conditions that can be manipulated artificially in the new quartz crystal, and realizes the effective frequency doubling within the VUV range. The relevant research is ...

    2023-08-30
    Δείτε τη μετάφραση
  • Breakthrough in Silicon Based Room Temperature Continuous Wave Topological Dirac Vortex Microcavity Laser

    With the explosive growth of data traffic, the market is extremely eager for hybrid photonic integrated circuits that can combine various optical components on a single chip.Silicon is an excellent material for photonic integrated circuits (PICs), but achieving high-performance laser sources in silicon still poses challenges. The monolithic integration of III-V quantum dot (QD) lasers on silicon i...

    2023-10-26
    Δείτε τη μετάφραση
  • Siemens will provide Rolls Royce with aerospace additive manufacturing components

    Recently, Siemens Energy's Materials Solutions division (hereinafter referred to as Siemens) officially signed a cooperation agreement with Rolls Royce, a well-known enterprise in the field of aviation engines in the UK, agreeing that Siemens will develop and supply mass-produced additive manufacturing components for Rolls Royce's civil aerospace business.Rolls Royce and 3D Printing TechnologyRoll...

    2024-12-13
    Δείτε τη μετάφραση
  • Shanghai Institute of Optics and Mechanics has made progress in studying the structure and properties of aluminum phosphate glass

    Recently, Hu Lili, a research team of the High Power Laser Unit Technology Laboratory of the Chinese Academy of Sciences Shanghai Institute of Optics and Fine Mechanics, used a method combining experiment, molecular dynamics simulation and quantitative structure property relationship analysis (QSPR) to study aluminum phosphate glass, and the related research results were published in the Journal o...

    2023-09-15
    Δείτε τη μετάφραση