Ελληνικά

The LANL laboratory in the United States uses quantum light emitters to generate single photon light sources

197
2023-09-01 14:00:44
Δείτε τη μετάφραση

Recently, the Los Alamos National Laboratory (LANL) in the United States has developed a method for quantum light emitters, which stacks two different atomic thin materials together to achieve a light source that generates circularly polarized single photon streams. These light sources can also be used for various quantum information and communication applications.

According to Han Htoon, a researcher at Los Alamos, this work shows that single-layer semiconductors can emit circularly polarized light without the need for an external magnetic field.

Previously, this effect could only be achieved through the high magnetic field generated by bulky superconducting magnets, coupling quantum emitters to very complex nanoscale photonic structures, or injecting spin polarized charge carriers into quantum emitters. Our proximity effect method has the advantages of low manufacturing cost and high reliability.

Polarization is a means of encoding photons, therefore this achievement is an important step in the direction of quantum cryptography or quantum communication. With a light source that generates a single photon stream and introduces polarization, we basically merge the two devices into one.

The research team stacked a single molecule thick layer of tungsten selenide semiconductor onto a thicker layer of nickel phosphorus trisulfide magnetic semiconductor. Using atomic force microscopy, the research team created a series of nanoscale indentations on thin layer materials.

When the laser is focused on the material pile, the 400 nanometer diameter indentation generated by the atomic microscope tool has two effects. Firstly, the indentation forms a "well" or "depression" in the potential energy landscape. The electrons of the tungsten selenide monolayer fall into the depression. This stimulates the emission of a single photon from the well.

Nanoindentation also disrupts the typical magnetic properties of the underlying nickel phosphorus trisulfide crystal, generating local magnetic moments pointing outward from the material. This magnetic moment circularly polarizes the emitted photons. In order to experimentally confirm this mechanism, the team first collaborated with the pulse field facility of the Los Alamos National High Magnetic Field Laboratory to conduct high magnetic field spectroscopy experiments. Then, the team collaborated with the University of Basel in Switzerland to measure the tiny magnetic field of the local magnetic moment.

The team is currently exploring methods to adjust the degree of circular polarization of single photons through electronic or microwave stimulation. This capability will provide a method for encoding quantum information into photon streams. Further coupling between photon flow and waveguide will provide photon circuits, allowing photons to propagate in one direction. This circuit will become a fundamental component of the ultra secure quantum internet.

Source: OFweek

Σχετικές προτάσεις
  • ALPD laser projection technology enters the Middle East market

    With the continuous growth of user numbers and usage duration, the quality and reliability of the ALPD laser projection solution independently developed by the global laser display leader Guangfeng Technology (688007. SH) have been increasingly recognized by more and more users.It is reported that VOX Cinemas, a well-known cinema line in the Middle East, has also joined the ALPD laser projection s...

    2024-08-07
    Δείτε τη μετάφραση
  • Progress in Theoretical Research on the Mechanism of Liquid Terahertz Wave Generation by Precision Measurement Institute

    Terahertz waves have significant application value in communication and imaging. The nonlinear interaction between strong field ultrafast laser and matter is one of the important ways to generate terahertz waves. The experimental and theoretical research related to terahertz generation media such as plasma, gas, and crystal is relatively sufficient. However, liquid water is a strong absorbing medi...

    2024-03-22
    Δείτε τη μετάφραση
  • The research team has solved decades long challenges in the field of microscopy

    When observing biological samples under a microscope, if the medium in which the objective lens is located is different from the sample, the light beam will be interfered with. For example, when observing a water sample with a lens surrounded by air, the light bends more strongly in the air around the lens than in water.This interference can cause the measured sample depth to be smaller than the a...

    2024-04-27
    Δείτε τη μετάφραση
  • Innovative nanoparticle analysis: achieving breakthrough 3D imaging using X-ray lasers

    The latest progress in X-ray laser technology has opened up a new era of nanoscale exploration, bringing unprecedented opportunities for materials science and nanotechnology. Researchers have developed a novel imaging technique that can directly visualize separated nanosamples in free flight, capturing their complex structures with stunning details. This breakthrough method relies on single cohere...

    2024-03-05
    Δείτε τη μετάφραση
  • Seyond plans to land on the Hong Kong Stock Exchange in De SPAC mode

    Recently, TechStar Acquisition Corporation (07855. HK), a special purpose acquisition company, announced that Seyond, the successor company of the special purpose acquisition transaction, has submitted a new listing application. Seyond plans to land on the Hong Kong Stock Exchange under the De SPAC model. This means that Seyond is only one step away from going public through a backdoor listing. If...

    02-14
    Δείτε τη μετάφραση