Ελληνικά

Romania Center launches the world's most powerful laser

203
2024-04-01 14:02:09
Δείτε τη μετάφραση

Are you ready? The signal is out! "
In the control room of a research center in Romania, engineer Antonio Toma has activated the world's most powerful laser, which is expected to make revolutionary progress in various fields from the health sector to space. The laser located in the center near the Romanian capital Bucharest is operated by the French company Thales and utilizes the invention of Nobel laureates.
Gerard Mourou from France and Donna Strickland from Canada were awarded the 2018 Nobel Prize in Physics for using the power of lasers to develop advanced precision instruments in corrective eye surgery and industry.


The Nobel Academy's award speech said, "The sharp laser beam provides us with a new opportunity to deepen our understanding of the world and shape it."

At the center, in front of the screen wall displaying the beam of light, Thomas checked a series of indicators before starting the countdown. On the other side of the glass, a long row of red and black boxes are equipped with two laser systems. 29 year old Toma told Agence France Presse in a recent live media interview, "I won't lie. Sometimes things can become a bit stressful."
"But working here is also very enjoyable. When the international research team arrived at the center, we were happy that we had achieved results," she added.

-"The incredible Odyssey"-
Nobel laureate Muru admitted that he was "deeply moved" by his "incredible adventure" - from where he stayed in the United States for 30 years to achieving this project in Europe. It originated from the European Infrastructure ELI project in the 2000s. 79 year old Muru said, "We start with a glowing seed with very, very little energy, and it will be magnified millions of times.".

Scientists have been committed to creating more powerful lasers.
However, by the mid-1980s, they encountered a bottleneck as they were unable to increase power without damaging the amplified beam. At that time, Muru and his student Strickland invented a technology called Chirped Pulse Amplification (CPA), which could increase power while maintaining strength safety. Its working principle is to timely stretch the ultra short laser pulse, amplify it, and then compress it together again, thereby generating the shortest and strongest laser pulse in the world's history. It has been applied in corrective ophthalmic surgery, but it also opens the way for scientists to continue breaking through the limits of laser power.
Muru said, "We will use these ultra strong pulses to produce more compact and cheaper particle accelerators to destroy cancer cells.".

-Laser Era-
He added that other possible applications include processing nuclear waste by reducing the duration of radioactivity, or cleaning up accumulated debris in space. For Muru, just as the last century was the electronic century, the 21st century will also be the laser century.
The scale of operation of the research center is dazzling.

The system is capable of reaching a peak of 10 petawatts (to the 15th power of 10 watts) in an ultra short period of time on the order of femtosecond (one billionth of a second). Franck Leibreich, Managing Director of Thales Laser Solutions, stated that "450 ton equipment" needs to be carefully installed to achieve "excellent performance levels.".

The high-tech building of the center costs 320 million euros (350 million US dollars), mainly funded by the European Union.
Thales called it the largest scientific research investment in Romanian history.
Meanwhile, countries such as France, China, and the United States are already advancing their own projects to manufacture more powerful lasers.

Source: Laser Net

Σχετικές προτάσεις
  • The new chip opens the door to artificial intelligence computing at the speed of light

    Engineers at the University of Pennsylvania have developed a new chip that uses light waves instead of electricity to perform complex mathematical operations necessary for training artificial intelligence. This chip has the potential to fundamentally accelerate the processing speed of computers while reducing their energy consumption.The design of a silicon photonic chip was the first to combine t...

    2024-02-18
    Δείτε τη μετάφραση
  • The influence of laser beam drift on SLM thin-walled TC11 specimens at high scanning speed

    AbstractDue to the width of the laser melt pool and the sintering effect on the surrounding powder, the experimental size of the selective laser melting (SLM) sample will be larger than the design size, which will greatly affect the dimensional accuracy and surface quality of the thin-walled sample. In order to obtain SLM thin-walled TC11 specimens with precise dimensions, an orthogonal experiment...

    02-24
    Δείτε τη μετάφραση
  • DR Laser releases its 2024 semi annual report, achieving dual growth in revenue and profit

    A few days ago, DR laser released 2024 half-yearly report, the company realized operating income of 906 million yuan in the first half of the year, a year-on-year increase of 34.40%; net profit of 236 million yuan, a year-on-year increase of 35.51%. For the reasons of performance growth, DR laser said in the half-yearly report, the company's first half of the order continued to acceptance brough...

    2024-08-23
    Δείτε τη μετάφραση
  • 2D photoelectric neuron array can achieve broadband and low loss optical nonlinearity accessible to ambient light

    Light can calculate functions during propagation and interaction with structured materials, with fast speed and low energy consumption. The use of all optical neural networks for general computing requires an optical activation layer with nonlinear dependence on the input. However, existing optical nonlinear materials either have slow speeds or very weak nonlinearity at the level of natural light ...

    2024-03-20
    Δείτε τη μετάφραση
  • Bohong has developed a new type of ultrafast laser for material processing

    Chief researcher Clara Saraceno will bring the new laser to the market with the support of ERC funding.Femtosecond lasers can be used to create high-precision microstructures, such as those required for smartphone displays and various automotive technology applications.Professor Clara Saraceno from Ruhr University in Bochum, Germany is committed to developing and introducing cheaper and more effic...

    2023-08-22
    Δείτε τη μετάφραση