Ελληνικά

Breakthrough in optical quantum simulation using long-lived polariton droplets

759
2024-03-27 16:35:32
Δείτε τη μετάφραση

Abstract: A groundbreaking discovery by CNR Nanotec and scientists from the University of Warsaw has revealed a robust method for creating long-lived quantum fluids using semiconductor photonic gratings. This study, published in the journal Nature Physics, marks a significant step forward in simulating complex systems through unique polariton droplets that demonstrate stability in lifespan and reconfigurability after optical manipulation.

Researchers specializing in quantum physics have made significant strides in stabilizing light based quantum fluids, marking an advancement in the simulation of complex systems. This success was achieved through the adoption of a new type of photonic grating technology on semiconductors.
This stability is achieved by connecting quantum light droplets into so-called "macroscopic coherent states". Essentially, scientists have demonstrated a technique that allows the use of light to simulate the interactions between synthetic atoms of various configurations. This innovative method greatly expands the potential for researchers to explore multi-body quantum phenomena in greater depth.

Part of the achievement stems from creating a bound state for polaritons in continuous media, which makes them less susceptible to radiation loss and endows them with effective negative mass. This keeps the polaritons stable and less prone to decay, despite the need for sustained laser pumping.

Polarized polariton droplets are made to interact and merge into broader, optically programmable complexes, paving the way for extensive experimental research on phenomena such as structured nonlinear lasers and quantum simulations.

Researchers are optimistic about the prospects of this technology. A unique discovery is the different interactions between polariton droplets within and near the grating plane, indicating interesting possibilities for observing new synchronous behaviors and modes in quantum fluids. This work is funded by the National Science Center of the United States and the Horizon 2020 research framework of the European Union.

The field of quantum physics has taken a significant step forward, as scientists from CNR Nanotec and the University of Warsaw have made significant breakthroughs in creating long-lived quantum fluids. Their research, published in the journal Nature Physics, highlights an exciting new method of generating stable quantum fluids through semiconductor photonic gratings. These polariton droplets exhibit great stability in terms of lifespan and can be reconfigured as needed using optical operations.

The essence of this discovery lies in its ability to maintain macroscopic coherence between quantum light droplets, providing a better method for simulating interactions between synthesized atoms. This simulation of multi-body quantum phenomena has enormous potential to expand our understanding of the quantum world.

One of the main features of this technology is the generation of bound states for polaritons in a continuous medium, which helps prevent radiation loss and effectively endow these particles with negative mass. This feature ensures better stability of polaritons, allowing for continuous exploration even if regular optical pumping is required.

With the continuous growth of the industry, market forecasts indicate an increasing interest in quantum technology, including quantum computing, secure communication, and sensing applications. It is expected that the quantum technology market will significantly expand in the coming years, with the potential to achieve breakthroughs, thereby completely changing various fields such as cybersecurity, finance, drug development, and materials science.

However, the industry faces some challenges, including implementing practical and scalable quantum systems, managing decoherence, and creating sustainable economic models for quantum technology enterprises. These obstacles highlight the necessity of continuous investment in research and development.

In short, the study of quantum fluids is only one of the rapidly developing fields in the quantum industry. The significance of this study is a significant and promising advancement in quantum simulation, which can uncover new insights into complex quantum systems. This study not only represents scientific progress, but also an important step towards the practical application of quantum principles in various technologies. With the continuous development of the quantum industry, it will bring breakthrough changes that will affect the future of the technology we know.

Source: Laser Net

Σχετικές προτάσεις
  • The research team has developed a mechanical luminescent touch screen that can work underwater

    The optical properties of afterglow luminescent particles in mechanical luminescence and mechanical quenching have attracted much attention in various technological applications. A group of researchers from Pohang University of Science and Technology has attracted attention by developing an optical display technology with ALP that can write and erase messages underwater.The team is composed of Pro...

    2024-03-08
    Δείτε τη μετάφραση
  • Polarization of Laser Writing Waveguides Controlled by Liquid Crystal

    German researchers have developed a method for controlling and manipulating optical signals by embedding liquid crystal layers into waveguides created by direct laser writing. This work has produced devices capable of electro-optic control of polarization, which may open up possibilities for chip based devices and complex photonic circuits based on femtosecond write waveguides.Researcher Alexandro...

    2024-03-13
    Δείτε τη μετάφραση
  • Toshiba has developed the world's highest precision 99.9% LiDAR technology

    Recently, Toshiba announced that in the field of LiDAR lidar for distance measurement, it has developed a technology that can track vehicles, people, and other objects with 99.9% accuracy, achieving the world's highest accuracy. And only using LiDAR to collect data can achieve 98.9% object recognition.In addition, the detection distance in rainstorm and dense fog environments has been increased by...

    2023-10-06
    Δείτε τη μετάφραση
  • Researchers use laser doping to enhance the oxidation of IBC solar cells

    Researchers from the International Solar Research Center at Konstanz and Delft University of Technology have discovered a method to pattern the back end of a cross finger rear contact battery, improving its efficiency by making certain parts of the solar cell thicker.Researchers have developed a new technology that enhances oxidation in selected areas by patterning the back or back of IBC solar ce...

    2024-02-20
    Δείτε τη μετάφραση
  • Micro active vortex laser

    Recently, Dong Yibo, from the Photonic Chip Research Institute of Shanghai University of Technology, published his research findings titled "Nanoprinted Diffractive Layer Integrated Vertical Cavity Surface Emitting Vortex Lasers with Scalable Topological Charge" as the first author in the internationally renowned journal Nano Letters.This achievement was jointly completed by the team of academicia...

    2023-10-24
    Δείτε τη μετάφραση