Ελληνικά

The new chip opens the door to artificial intelligence computing at the speed of light

683
2024-02-18 10:16:33
Δείτε τη μετάφραση

Engineers at the University of Pennsylvania have developed a new chip that uses light waves instead of electricity to perform complex mathematical operations necessary for training artificial intelligence. This chip has the potential to fundamentally accelerate the processing speed of computers while reducing their energy consumption.

The design of a silicon photonic chip was the first to combine the Benjamin Franklin Medal winner with H Professor Nedwell Ramsey Nader Engheta's pioneering research on manipulating materials at the nanoscale to use light for mathematical calculations is combined with the SiPh platform, which uses silicon as a cheap and abundant element for large-scale production of computer chips.

The interaction between light waves and matter represents a possible way to develop computers that have replaced the limitations of today's chips, which are basically based on the same principles as chips in the early stages of the computing revolution in the 1960s.

In a paper published in Nature Photonics, Engheta's team, along with the team of Associate Professor of Electrical and Systems Engineering Firoz Aflatouni, described the development of a new chip.

"We have decided to work together," Engheta said, leveraging the fact that Aflatouni's research team has pioneered nanoscale silicon devices.

Their goal is to develop a platform to perform so-called vector matrix multiplication, which is the core mathematical operation of neural network development and functionality. Neural networks are the computer architecture of today's artificial intelligence tools.

Engheta explained, "You're not using highly uniform silicon wafers, but making the silicon thinner, such as 150 nanometers," but only in specific areas. These height changes - without adding any other materials - provide a way to control the propagation of light through the chip, as the height changes can be distributed to cause light to scatter in specific modes, allowing the chip to perform mathematical calculations at the speed of light.

Aflatouni said that due to restrictions imposed by commercial foundries producing chips, this design is ready for commercial applications and may be applicable to graphics processing units. With the widespread interest in developing new artificial intelligence systems, the demand for graphics processing units has surged.

"They can use silicon photonics platforms as additional components," Aflatouni said, "and then you can accelerate training and classification speed.".

In addition to faster speeds and lower energy consumption, Engheta and Aflatouni chips also have privacy advantages: because many calculations can be performed simultaneously, sensitive information does not need to be stored in the computer's working memory, making future computers driven by this technology almost impossible to crack.
"No one can invade non-existent memory to access your information," said Aflatouni.

Other co authors include Vahid Nikkhah, Ali Pirmoradi, Farshid Ashtiani, and Brian Edwards from the School of Engineering at the University of Pennsylvania.

Source: Laser Net

Σχετικές προτάσεις
  • Researchers have reinvented laser free magnetic control

    In a significant advancement in material physics, researchers from Germany and the United States have theoretically demonstrated that only extremely thin materials need to be α- RuCl3 can be placed in an optical cavity to control its magnetic state.This discovery may pave the way for new methods of controlling material properties without the use of strong lasers.The Role of Optical Vacuum W...

    2023-11-09
    Δείτε τη μετάφραση
  • The Application of Femtosecond Laser in Precision Photonics Manufacturing

    Femtosecond laser emits ultra short light pulses with a duration of less than 1 picosecond, reaching the femtosecond domain. The characteristics of femtosecond lasers are extremely short pulse width and high peak intensity.Ultra short blasting can minimize waste heat, ensure precise material processing, and minimize incidental damage. Their peak intensities can cause nonlinear optical interactions...

    2024-02-28
    Δείτε τη μετάφραση
  • Analysis of Optically Pumped Semiconductor Laser Technology for Promoting the Development of Life Sciences

    Optically Pumped Semiconductor Lasers technology has achieved great success in the market due to its various unique advantages, with over 100000 OPSL devices currently operating in the market. This article introduces the application and new developments of OPSL in the fields of flow cytometry and DNA sequencing.OPSL has the characteristics of flexible wavelength extension, adjustable power, compac...

    2024-02-01
    Δείτε τη μετάφραση
  • Panasonic has announced the launch of two new laser projectors

    Panasonic announced the launch of two new 1-Chip 4K DL laser projectors, the PT-REQ15 projector offering 15,000 lumens of brightness, while its counterpart, the PT-REZ15, offers 15,000 lumens of WUXGA resolution.The REQ15 uses Panasonic's Quad Pixel Drive, a two-axis pixel shift technology, to reproduce 4K images. It is capable of projecting 2K/240Hz content on multiple edge hybrid screens with a ...

    2023-09-07
    Δείτε τη μετάφραση
  • Intel: Has acquired most of ASML's NA extreme ultraviolet lithography equipment in the first half of next year

    According to Korean media reports, Intel has acquired most of the high numerical aperture (NA) extreme ultraviolet (EUV) lithography equipment manufactured by ASML in the first half of next year.ASML plans to produce 5 high NA EUV lithography equipment this year, all of which will be supplied to Intel.They stated that ASML has an annual production capacity of approximately 5-6 High Numerical Apert...

    2024-05-21
    Δείτε τη μετάφραση