Ελληνικά

Turn to 4-inch wafers! Dutch Photonics Integrated Circuit Enterprise Announces Production Expansion and Price Reduction

531
2024-02-03 10:28:04
Δείτε τη μετάφραση

Recently, SMART Photonics, a Dutch photonic integrated circuit manufacturer, announced a major decision to transfer its entire production capacity from 3-inch wafers to 4-inch silicon substrates, thereby expanding the production scale of photonic chips and significantly reducing chip prices.

According to the company, SMART Photonics is one of the first photonic integrated circuit foundries to provide 4-inch indium phosphide wafer production.

The above transformation not only increases production scale, but also brings significant advantages: generally speaking, 4-inch wafers contain almost twice the number of chips as 3-inch wafers, which means that production efficiency can be greatly improved. The company stated that this scale effect will translate into lower chip prices, thereby better meeting market demand.

"This shift is not just about the number of wafers. A larger wafer substrate will enable us to better meet the market demand for optical chips," said Guy Backner, Chief Operating Officer of SMART Photonics
He further added that by reducing costs and improving production efficiency, the company is expected to play a greater leading role in the integrated optoelectronic ecosystem.

This transformation has received support from the industry and financial venture capital institutions. Last July, partners such as PhotonDelta, chip equipment giant ASML, and chip manufacturer NXP Semiconductors provided $111 million in financing. In addition, the EU's InterReg Northwest Europe project OIP4NWE has also provided important support for this change.

SMART Photonics has demonstrated its innovative capabilities and forward-looking layout in the field of photonic integrated circuits by shifting production capacity from 3-inch to 4-inch wafers. This transformation not only enhances the company's competitiveness, but also lays a solid foundation for the development of the entire Dutch optoelectronic ecosystem. In the future, the company will fully utilize its financing to expand its manufacturing capabilities and accelerate the development of its PIC technology platform and process design suite.

Source: OFweek Laser Network

Σχετικές προτάσεις
  • Germany has developed a fast, accurate, and wear-resistant laser drilling CFRP process

    Recently, scientists from the Hanover Laser Center (LZH) in Germany announced the successful development of an automated laser drilling process that can promote the processing of carbon fiber reinforced plastics (CFRP). They stated that this is particularly valuable in applications such as lightweight structures and sound insulation.Composite materials such as carbon fiber reinforced plastics (CFR...

    2024-03-06
    Δείτε τη μετάφραση
  • WVU engineers develop laser systems to protect space assets from the impact of Earth orbit debris

    The research from the University of West Virginia has been rewarded, as debris scattered in planetary orbits that pose a threat to spacecraft and satellites may be pushed away from potential collision paths by a coordinated space laser network.Hang Woon Lee, director of the Space Systems Operations Research Laboratory at the University of West Virginia, said that artificial debris dumps, including...

    2023-10-10
    Δείτε τη μετάφραση
  • The carbon dioxide laser market is expected to reach 7.1 billion US dollars by 2033

    The carbon dioxide laser market will show significant elasticity and sustained growth in the next decade, with a compound annual growth rate of 3.6% expected from 2023 to 2033.This impressive prediction indicates the persistent demand and expanding application of carbon dioxide lasers in various industries.By the end of 2033, the market is expected to reach a significant valuation of $7.1 billion,...

    2023-10-27
    Δείτε τη μετάφραση
  • Researchers develop new techniques for controlling individual qubits using lasers

    Researchers at the University of Waterloo's Institute for Quantum Computing (IQC) have developed a new technique that uses lasers to control individual qubits made from the chemical element barium. The breakthrough is a key step toward realizing the capabilities of quantum computers.The new technique uses thin glass waveguides to segment and focus laser beams with unprecedented precision. Each foc...

    2023-09-12
    Δείτε τη μετάφραση
  • XTool enables pre-sale of F1 superfiber and diode laser cutting machines

    Tool has started pre-sales for the F1 Ultra, a 20 watt fiber and diode dual laser engraving machine. OEMs have stated that it is a win-win product and its so-called "flagship" model.Fiber lasers are mainly used for metal materials and usually work faster than diode lasers, but other materials have better performance when using diode lasers. F1 Ultra aims to bridge this gap by using a power of 20W ...

    2024-05-09
    Δείτε τη μετάφραση