Ελληνικά

Single photon avalanche diode for millimeter level object recognition using KIST

1029
2024-02-03 10:17:08
Δείτε τη μετάφραση

LiDAR sensors are crucial for implementing modern technologies such as autonomous driving, AR/VR, and advanced driving assistance systems. For example, more accurate shape detection in AR/VR devices and smartphones depends on the improved range resolution of medium and short range LiDAR. This requires a single photon detector with improved timing jitter performance.

LiDAR calculates the distance and generates a three-dimensional image by measuring the time it takes for photons released by the transmitter to impact an object, reflect and return to the receiver. The higher the accuracy of object recognition, the smaller the value of "timing jitter", which is a small change in detection time when a single photon detector on the receiver converts an optical signal into an electrical signal.

According to the Korean Academy of Science and Technology, under the guidance of Dr. Myung Jae Lee, a team from the Institute of Postsilicon Semiconductors has created a "single photon avalanche diode" that can recognize millimeter level objects using 40nm backlit CMOS image sensor technology.

The development of SPAD is extremely difficult, and currently only Sony in Japan has successfully commercialized LiDAR based on SPAD and supplied it to Apple products based on its 90nm backlit CMOS image sensor technology.

Although the timing jitter performance of Sony SPAD is about 137-222 ps, it is not yet sufficient to achieve the user recognition, gesture recognition, and precise shape recognition of objects required for medium and short distance LiDAR applications. Sony's SPAD is more effective than the backlit SPAD reported in the literature.

The single photon sensor element developed by KIST has more than twice the jitter performance at 56 ps, with a distance resolution of about 8 mm, and has great potential as a medium to short range LiDAR sensor element.

Specifically, SPAD was created based on 40nm backlit CMOS image sensor technology through collaborative research with SK Hynix, and is expected to be immediately localized and commercialized.

This study was funded by the Korea Institute of Science and Technology and the Korea National Research Foundation, and was highlighted at the 2023 International Conference on Electronic Devices held in San Francisco, USA on December 12, 2023, from December 9 to 13.

IEDM is one of the most important conferences for semiconductor industry and research professionals, attended by major global semiconductor companies such as SK Hynix, Samsung Electronics, and Intel.

Source: Laser Net

Σχετικές προτάσεις
  • Harvard University and University of Vienna invented tunable laser chips

    Researchers at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) and Vienna University of Technology (TU Wien) have invented a new type of tunable semiconductor laser that shows smooth, reliable, wide-range wavelength tuning in a simple, chip-sized design.Tunable lasers are integral to many technologies, from high-speed telecommunications to medical diagnostics to safet...

    07-16
    Δείτε τη μετάφραση
  • SuperLight Photonics receives strategic investment from Hamamatsu Ventures

    Recently, SuperLight Photonics, a leading laser technology manufacturer, announced that it has received strategic investment from global venture capital firm Hamamatsu Ventures, which will be used to promote long-term innovation and collaborative development of its laser technology. Hamamatsu Ventures focuses on investing in photonics companies that address future demand expectations, particular...

    2024-10-22
    Δείτε τη μετάφραση
  • A Large Angle Color Holographic 3D Display System Based on Color LCD Grating

    Holographic display technology provides the ultimate solution for true 3D display, with enormous potential in augmented reality and virtual reality. However, the color and viewing angle of holographic 3D displays mainly depend on the wavelength of the laser and the pixel size of the current spatial light modulator. The inevitable color difference and narrow viewing angle in conventional systems se...

    2024-01-24
    Δείτε τη μετάφραση
  • Scientists have developed a palm sized femtosecond laser using a glass substrate

    Researchers at the Federal College of Technology in Lausanne (EPFL) have shown that femtosecond lasers suitable for palm size can be manufactured using glass substrates.Can femtosecond lasers made entirely of glass become a reality? This interesting question prompted Yves Bellouard, the head of the Galata laboratory at the Federal Institute of Technology in Lausanne, to embark on a journey after y...

    2023-10-04
    Δείτε τη μετάφραση
  • Researchers propose NeuFlow: an efficient optical flow architecture that can solve high-precision and computational cost issues

    Real time and high-precision optical flow estimation is crucial for analyzing dynamic scenes in computer vision. Although traditional methods are fundamental, they often encounter issues with computation and accuracy, especially when executed on edge devices. The emergence of deep learning has driven the development of this field, providing higher accuracy, but at the cost of sacrificing computati...

    2024-03-23
    Δείτε τη μετάφραση