Ελληνικά

Optical Drive Magnetic Control: A Breakthrough in Memory Technology

184
2024-01-06 14:21:21
Δείτε τη μετάφραση

A recent study conducted by the Hebrew University suggests an undiscovered relationship between magnetism and light. This discovery may pave the way for extremely fast optical storage technology and creative optical magnetic sensor technology.

It is expected that this discovery will completely change the way equipment is manufactured and data is stored in a range of fields.

Amir Capua, Professor and Head of the Spintronics Laboratory at the Institute of Applied Physics and Electrical Engineering at the Hebrew University of Jerusalem, reported on significant developments in the field of optomagnetic interactions. The team's surprising discovery demonstrated the process of manipulating solid magnetic states using optical laser beams, providing practical significance for a range of industries.

The discovery of neglected photomagnetic components, which are often overlooked due to the slower reaction of magnets compared to light radiation, contradicts recognized knowledge. The team's research has revealed a new theory: the ability of rapidly oscillating light wave magnetic components to manipulate magnets redefines fundamental physical interactions.

It is interesting that people have found a simple mathematical relationship between the amplitude, frequency, and energy absorption of magnetic materials to characterize the strength of interactions.

This discovery combines concepts from two scientific disciplines that previously had little in common and were closely related to the field of quantum technology. We arrived at this understanding by using principles that have been established in the quantum computing and quantum optics communities, but are less important in the spintronics and magnetism communities.

When magnetic materials and radiation are in a perfect equilibrium state, their interaction is recognized. However, so far, the situation involving radiation and imbalanced magnetic materials has only been described very briefly.

The fundamental principles of quantum computing and quantum optics were discovered in this non-equilibrium field. Using the concepts of quantum physics, we studied this non-equilibrium state in magnetic materials and demonstrated evidence of the fundamental idea that magnets can react to light at a short time scale. In addition, this kind of communication has been proven to be very meaningful and effective.

In addition, the group has also developed a unique sensor that can combine this discovery to identify the magnetic composition of light. Compared to traditional sensors, this innovative design provides adaptability and integration for a wide range of applications, which may alter sensor and circuit design to achieve different uses for light.

Mr. Benjamin Assouline, a doctoral student at the Spintronics Laboratory, conducted this study, which is crucial for this discovery. Recognizing the potential significance of their findings, the team has submitted multiple related patent applications.

The study was funded by the Israel Science Foundation, the Peter Broyd Center for Innovation Engineering and Computer Science, and the Center for Nanoscience and Nanotechnology at the Hebrew University of Jerusalem.

Source: Laser Net

Σχετικές προτάσεις
  • New laser technology can achieve more efficient facial recognition

    Recently, the latest research report from FLEET, an interdisciplinary research team in Australia, revealed a significant leap in laser technology, achieving unprecedented levels of spectral purity.Spectral purity, which refers to the degree of matching of a single light frequency (or color) generated by a laser, is an important indicator for measuring laser performance. By using a scanning Fabry P...

    2024-06-24
    Δείτε τη μετάφραση
  • Emerging laser technologies for precise manufacturing of multifunctional nanomaterials and nanostructures

    The use of photons to directly or indirectly drive chemical reactions has fundamentally changed the field of nanomaterial synthesis, leading to the emergence of new sustainable laser chemistry methods for manufacturing micro - and nanostructures. The incident laser radiation triggers complex interactions between chemical and physical processes at the interface between solid surfaces and liquid or ...

    2024-08-05
    Δείτε τη μετάφραση
  • Yangtze Welcomes 8th Overseas Production Site

    On August 8, local time, Jalisco, Mexico welcomed the grand opening of Yangtze Optics Mexico Cable S.A. de C.V., marking the eighth overseas production base of Yangtze Optical Fiber & Cable Co. ("Yangtze Fiber Optics") has successfully set up its eighth overseas production base in its 36-year development history, further advancing its internationalization strategy blueprint. Today, we are pr...

    2024-08-14
    Δείτε τη μετάφραση
  • Scientists simulate the conditions that allow photons to collide with photons by using lasers

    As far as quantum physics is concerned, one of the most striking predictions is that matter can be produced entirely from light (i.e., photons). Pulsars are an example of an object capable of achieving this feat.In a recent study reported in the journal Physical Review Letters, a research team led by scientists at Osaka University simulated the conditions that allow photons to collide with photons...

    2023-08-11
    Δείτε τη μετάφραση
  • The most advanced gas sensing laser technology will be exhibited at the upcoming CEM 2023 exhibition in Barcelona

    Nanoplus Nanosystems and Technologies GmbH is an ISO 9001:14001 certified supplier and one of the world's most famous laser manufacturers for gas sensing applications. The cornerstone of nanoplus's success is its unique patented method of manufacturing DFB laser sources. Nanoplus celebrates its 25th anniversary this year and separated from the University of Vilzburg in 1998.Among the outstanding i...

    2023-09-14
    Δείτε τη μετάφραση