Ελληνικά

A New RIEGL Laser Scanning Solution for Drone Data Acquisition

160
2023-12-01 15:01:23
Δείτε τη μετάφραση

With its latest developments, RIEGL once again emphasizes its pioneering role as a supplier of high-performance LiDAR sensors and integrated systems with UAS. The continuous trend in the drone system industry requires measurement level laser scanners that match the integrated performance of compact multi rotor and high-speed vertical takeoff and landing or fixed wing drone platforms.

RIEGL has recognized this trend and adjusted its product range in this direction. The typical accuracy/precision and multi-target capability of RIEGL, combined with excellent measurement range, wide field of view, extremely high laser pulse repetition rate, and fastest production line speed, are the foundation of user success. These key attributes allow the drone system to fly at the maximum possible operating altitude, thereby achieving the highest possible area coverage. The on-site time and collection flight time are greatly reduced, thereby reducing overall costs and improving the safety of drone system applications. At the same time, more accurate point cloud data can be obtained and comprehensive coverage can be achieved. This increases the flexibility of the platform used for the project, and most importantly, improves efficiency.

The new RIEGL VUX-18024 provides a wide field of view of 75 degrees and an extremely high pulse repetition rate of up to 2.4 MHz. These features, combined with a scanning speed of up to 800 lines per second, make it highly suitable for high-speed measurement tasks and applications that require optimal line and point distribution. Typical applications include surveying and monitoring of key infrastructure such as power lines, rails, pipelines, and runways. The RIEGL VUX-18024 provides mechanical and electrical interfaces for IMU/GNSS integration, as well as up to 5 external cameras, reflecting the overall dimensions of the VUX-160. To achieve smooth and direct data storage, an internal SSD memory with 2 TByte storage capacity and a removable CFast storage card can be used. This sensor further supplements RIEGL's mature VUX-12023, VUX-160 type 23, and VUX-24024 series, and can be used as an independent sensor or in various fully integrated laser scanning system configurations, equipped with IMU/GNSS systems and optional cameras.

RIEGL VUX-24024 is a new enhanced version of the mature RIEGL VUX-240, which now offers higher pulse repetition rates and faster scanning speeds to further improve on-site performance and workflow efficiency. This sensor has a wide field of view of 75 degrees and an extremely fast data acquisition rate of up to 2.4 MHz, achieving a measurement rate of up to 2 million measurements per second, making it very suitable for high-density applications such as power line, track, and pipeline detection. Its scanning speed of up to 600 lines per second not only allows for operations on fast flying drones, but also allows for the operation of small helicopters, rotorcraft, and other manned aircraft at altitudes of up to 4700 feet.

The mechanical and electrical interfaces allow for optional integration of IMU/GNSS systems and up to 4 cameras. The data can be stored in the internal 2 TByte SSD memory, or can be stored using a removable CFAST storage card to transfer the data to a PC.
In addition to independent versions of the RIEGL miniVUX-1UAV and miniVUX-3UAV LiDAR sensors, RIEGL also offers system solutions for IMU/GNSS systems and cameras.

Now, RIEGL provides RiLOC, an integrated component used to supplement RIEGL's kinematic LiDAR system for locating and orienting LiDAR data in a reference coordinate system. This fully integrated subsystem has a compact and lightweight appearance, directly connected to the casing of the miniVUX-1UAV or miniVUX-3UAV, and the total weight of the system is only 1.75 kg. RiLOC itself consists of one or two GNSS receivers, an inertial measurement unit, and a data acquisition controller with accompanying software. It utilizes tight coupling to handle inertia, GNSS, and LiDAR data, providing a new entry-level choice for RIEGL's cost-effective UAS LiDAR system solution.

Source: Laser Net

Σχετικές προτάσεις
  • Researchers use a new frequency comb to capture photon high-speed processes

    From detecting COVID in respiration to monitoring greenhouse gas concentrations, laser technology called frequency combs can recognize specific molecules as simple as carbon dioxide to as complex as monoclonal antibodies, with unparalleled accuracy and sensitivity. Although frequency combs have incredible capabilities, their ability to capture high-speed processes such as hypersonic propulsion or ...

    2023-11-02
    Δείτε τη μετάφραση
  • Multi functional materials for solar cells and organic light-emitting diodes to achieve high performance and stability

    Through joint research, a team developed a 4-amino-TEMPO derivative with photocatalytic performance and successfully used it to produce high-performance and stable fiber like dye sensitized solar cells (FDSSCs) and fiber like organic light-emitting diodes (FOLEDs). This paper was published in the journal Materials and Energy Today.The developed 4-amino-TEMPO derivatives have the characteristic of ...

    2024-06-03
    Δείτε τη μετάφραση
  • Experimental verification of driving pressure enhancement and smoothing for hybrid driven inertial confinement fusion on a 100 kJ laser device

    The research teams from the Laser Fusion Research Center of the Chinese Academy of Engineering Physics, the Beijing Institute of Applied Physics and Computational Mathematics, Peking University, and Shenzhen University of Technology reported experimental verification of the driving pressure enhancement and smoothing of hybrid driven inertial confinement fusion on a 100 kJ laser equipment.The relev...

    2023-09-25
    Δείτε τη μετάφραση
  • Lawrence Livermore National Laboratory develops PW grade thulium laser in the United States

    Recently, according to Tom's Hardware, Lawrence Livermore National Laboratory (LLNL) in the United States is developing a PW (1015 W) level large aperture thulium (BAT) laser. It is reported that this laser has the ability to increase the efficiency of extreme ultraviolet lithography (EUV) light sources by about 10 times, and may potentially replace the carbon dioxide laser used in current EUV too...

    02-13
    Δείτε τη μετάφραση
  • Continuation of the Term of President and CEO of Jena Germany

    Recently, the supervisory board of Jenoptik, a leading German laser technology company, announced an important decision: to extend and confirm the term of Dr. Stefan Traeger as Chairman of the Executive Board, with a new term of three years starting from July 1, 2025, and the contract validity period correspondingly extended to June 30, 2028. Dr. Stefan Traeger has been serving as the President ...

    2024-09-06
    Δείτε τη μετάφραση