Ελληνικά

Breakthrough in Silicon Based Room Temperature Continuous Wave Topological Dirac Vortex Microcavity Laser

174
2023-10-26 16:07:10
Δείτε τη μετάφραση

With the explosive growth of data traffic, the market is extremely eager for hybrid photonic integrated circuits that can combine various optical components on a single chip.

Silicon is an excellent material for photonic integrated circuits (PICs), but achieving high-performance laser sources in silicon still poses challenges. The monolithic integration of III-V quantum dot (QD) lasers on silicon is considered a promising strategy to solve this problem.

However, most existing QD microcavity lasers are very sensitive to cavity changes, which fundamentally limits the performance of QD microcavity lasers.

It is reported that in a new paper titled "Room performance continuous wave topological Dirac vortex microcavity lasers on silicon" published in the journal "Light: Science&Applications" recently, a team of scientists led by Professor Sun Xiankai from the Chinese University of Hong Kong, Professor Zhang Zhaoyu from the Chinese University of Hong Kong (Shenzhen), and Dr. Chen Siming from University College London in the UK, The room temperature continuous wave Dirac vortex topology laser with InAs/InGaAs QD material grown on a single chip on coaxial silicon substrate at telecommunication wavelengths has been experimentally demonstrated, achieving breakthroughs in laser technology.

a. Concept diagram of a Dirac vortex topology laser grown epitaxial on silicon substrate. The photonic crystal structure is defined in the active layer and suspended by partially removing the sacrificial layer. b. The oblique view scanning electron microscope image of the realized topological Dirac vortex photonic crystal cavity. Scale: 500 nm. c. Cross section bright field transmission electron microscopy image of the active layer containing four stacked InAs/InGaAs QD layers.

It is reported that the laser has topological robustness and is not affected by external defects and cavity size changes, which is expected to revolutionize the technology of CMOS compatible photonic and optoelectronic systems on chips. This breakthrough may pave the way for the next generation of silicon based PICs with topological robustness and versatility.

The Dirac vortex state is a mathematical analog of the famous Mayorana Fermion (so-called "angel particle") in superconductor electronic systems, and has recently been discovered as a new strategy for tightly and robustly limiting classical waves. This method has significant advantages, such as a larger free spectral range than most existing optical cavities, making it an ideal choice for achieving single-mode surface emitting lasers.

The research team designed and manufactured a Dirac vortex photonic crystal laser using auxiliary orbital degrees of freedom in topological insulators. In this way, they are able to control the near-field of the Dirac vortex cavity to obtain linearly polarized far-field emissions. Then, they observed vertical laser emission from these cavities under continuous wave pumping at room temperature.


Experimental characterization of Dirac vortex topology laser. a. The variation of micro region fluorescence spectrum of Dirac vortex laser with pump power. b. The variation of micro region fluorescence spectral intensity (purple dots) and line width (orange squares) with pump intensity. c. The micro region fluorescence spectrum measured when the pump intensity is 0.395 kW cm-2. d. The variation of laser wavelength (purple dot) with pump intensity. e. The laser spectra of different Dirac vortex lasers indicate that precise regulation can be achieved in the wavelength range of 1300-1370 nm.

The breakthrough achievement of Dirac vortex QD laser is not only expected to become an on chip light source for the next generation of silicon-based photonic integrated circuits, but also opens the door to exploring topological phenomena such as non Hermitian properties, boson nonlinearity, and quantum electrodynamics. This may lead to significant progress in the field of optoelectronics and pave the way for more efficient and powerful communication technologies.

Source: Compiled by Old One

Σχετικές προτάσεις
  • Trumpf announces four personnel changes

    Recently, global laser giant Germany's Trumpf announced four personnel changes, namely Claudio Santopietro as the head of intelligent factory consulting and automation, Kevin Cuseo as the head of software sales, Julian Schorpp as the product manager for automatic bending products, and Adam Simons as the head of additive manufacturing for Trumpf North America.According to relevant information, Clau...

    2024-11-26
    Δείτε τη μετάφραση
  • Enlightra and DESY Hamburg developed an improved and scalable comb laser

    Laser technology startup Enlightra collaborates with DESY Hamburg to develop and design more stable and efficient comb lasers. This work demonstrates a microresonator with programmable synthetic reflection, providing tailored injection feedback for driving lasers. This technology has significantly improved compared to traditional self injection locking technology and can be produced using standard...

    2024-01-26
    Δείτε τη μετάφραση
  • Blue Tile Lab, a company specializing in semiconductor backend process visual inspection and laser light sources, has received additional financing

    Recently, South Korean listed company APS has invested in Blue Tile Lab, a company engaged in semiconductor backend process visual inspection and laser light sources. Meanwhile, D&T, a subsidiary of APS specializing in the production of laser cutting equipment for secondary batteries, has also made its first investment in Blue Tile Lab.According to relevant information, APS made its first inve...

    2024-12-26
    Δείτε τη μετάφραση
  • Ultrafast laser technology continues to reach new heights

    Ultra short pulse lasers, such as femtosecond lasers, are increasingly becoming easy-to-use plug and play devices suitable for a wide range of industrial and biomedical applications. Fifteen years ago, the volume of these lasers was still very large, requiring daily cleaning of optical components, regular maintenance of cooling water, and continuous optimization of laser parameters. Nowada...

    2023-11-06
    Δείτε τη μετάφραση
  • Researchers propose NeuFlow: an efficient optical flow architecture that can solve high-precision and computational cost issues

    Real time and high-precision optical flow estimation is crucial for analyzing dynamic scenes in computer vision. Although traditional methods are fundamental, they often encounter issues with computation and accuracy, especially when executed on edge devices. The emergence of deep learning has driven the development of this field, providing higher accuracy, but at the cost of sacrificing computati...

    2024-03-23
    Δείτε τη μετάφραση