Ελληνικά

Uncovering the Secrets of Nature: A New Generation of X-ray Lasers Reveals the Mystery of Atoms

676
2023-09-25 14:48:44
Δείτε τη μετάφραση

As a breakthrough leap in scientific exploration, the new generation of powerful X-ray lasers is now targeting the fastest and most basic processes in nature. Their mission: to uncover the complex atomic arrangement that drives these phenomena, providing unprecedented insights into chemical reactions, electronic behavior in materials, and the mysteries of the natural world.

Unlocking the precise mechanisms by which atoms participate in chemical reactions and electronic navigation materials can provide valuable knowledge for scientists seeking to replicate the extraordinary feats and efficiency of nature. From simulating the energy conversion process in plants to utilizing the unique characteristics of minerals to provide power for our electronic products, it has a wide range of applications and is transformative.

Professor Matthias Kling of Photonics at Stanford University affirmed the importance of this effort. He said in an interview with Axios, "We will be able to conduct experiments that were previously impossible. This information can be obtained through X-rays similar to lasers, and cannot be obtained through any other means.

The spotlight shines on the world's most powerful X-ray laser, marking a historic milestone recently. The Linear Accelerator Coherent Light Source (LCLS-II) X-ray Free Electron Laser (XFEL) at the SLAC National Accelerator Laboratory launched its first pulse last week, heralding a new era of scientific exploration.

The miracle of this upgraded version can release nearly 1 million X-ray flashes per second, which is an astonishing leap compared to its predecessor, with a power increase of nearly 8000 times. SLAC, with the support of Stanford University and the support of the Department of Energy, is the driving force behind this breakthrough progress.

The clever mechanism behind this scientific miracle involves pushing electrons to speeds close to the speed of light. Once in motion, these electrons will be cleverly manipulated to emit X-rays.

These high-energy X-ray pulses can be cleverly focused on tiny targets, providing a delicate and detailed window for the molecular world. These snapshots, combined together, can produce vivid movie sequences that showcase the complex dance of molecular interactions.

Breaking through the boundaries of cold
The originality of LCLS-II goes beyond that. The instrument uses superconductors and is cooled to a chilling 2 Kelvin temperature, which is even colder than the vast outer space. This cold environment is conducive to electrons accelerating with unparalleled accuracy and control along a 2-kilometer long tunnel.

Furthermore, LCLS-II's ambition goes beyond producing "low energy" X-rays. Plans are underway to enhance the instrument's capabilities to produce "hard" X-rays. The wavelengths of these hard X-rays are comparable to the distance between two bonded atoms, which is expected to reveal the complex details of atomic bonds and their angles between them.

In the intersection of cutting-edge technology and scientific curiosity, LCLS-II has opened up new fields for us to explore and control the atomic complexity of the natural world. Every X-ray flash beckons us one step closer to unraveling the deepest mysteries of nature.

Source: Laser Network

Σχετικές προτάσεις
  • Beijing Institute of Technology has made significant progress in the study of ultrafast carrier dynamics in optoelectronic functional crystals

    Recently, teachers and students from the Institute of Solid State Laser and Ultrafast Photonics at the School of Physics and Optoelectronic Engineering have made significant progress in the study of ultrafast carrier dynamics in optoelectronic functional crystals. The related research results are titled "Anisotropic carrier dynamics and laser fabricated luminosity patterns on oriented single cryst...

    2024-02-21
    Δείτε τη μετάφραση
  • HieFo launches high-power DFB laser chip to enter coherent optical transmission market

    Recently, HieFo, a leading enterprise in the field of optical communication, officially launched its HCL30 DFB laser chip, designed specifically to meet the stringent requirements of coherent optical transmission. This chip combines efficient optical output power with excellent narrow linewidth performance, providing multiple industry standard wavelength options in the O-band and C-band, bringin...

    2024-09-13
    Δείτε τη μετάφραση
  • Siemens will provide Rolls Royce with aerospace additive manufacturing components

    Recently, Siemens Energy's Materials Solutions division (hereinafter referred to as Siemens) officially signed a cooperation agreement with Rolls Royce, a well-known enterprise in the field of aviation engines in the UK, agreeing that Siemens will develop and supply mass-produced additive manufacturing components for Rolls Royce's civil aerospace business.Rolls Royce and 3D Printing TechnologyRoll...

    2024-12-13
    Δείτε τη μετάφραση
  • Stratasys Ltd. receives a $120 million investment from Fortissimo Capital

    It is reported that Stratasys Ltd. (NASDAQ: SSYS) announced on February 2nd that it has received a $120 million investment from Fortissimo Capital, an Israeli private equity firm. This transaction directly purchases 11.65 million newly issued shares at a price of $10.30 per share, representing a premium of 10.6% compared to the company's closing price on January 31, 2025. As of press time, it has ...

    02-05
    Δείτε τη μετάφραση
  • Sunny Optical's "Optical Imaging Lens" Announced

    Recently, according to the information of the China National Intellectual Property Administration, Zhejiang Sunny Optics Co., Ltd. has obtained a patent named "Optical Imaging Lens", with authorization announcement No. CN221899396U and application date of 2024-01-31.The patent abstract shows that the present application discloses an optical imaging lens, comprising a barrel and first to eighth len...

    2024-10-31
    Δείτε τη μετάφραση