Ελληνικά

Tescan expands semiconductor workflow using femtosecond laser technology

35
2025-11-20 10:58:32
Δείτε τη μετάφραση

Tescan releases its next-generation femtosecond laser platform, FemtoChisel, expanding its semiconductor product portfolio. This platform is committed to improving the speed, accuracy, and quality of sample preparation, and will officially debut at the ISTFA exhibition in 2025.

 



FemtoChisel was developed specifically for semiconductor research and failure analysis environments where both throughput and adaptability are critical. By combining nanometer-level precision and high-throughput intelligent laser processing, FemtoChisel delivers pristine surfaces while significantly reducing the need for subsequent FIB polishing steps. This enables faster turnaround in research and failure analysis for current, and future, semiconductor materials.

“Semiconductor research and failure analysis teams are under constant pressure to deliver faster, more reliable results from any material layer within semiconductors stack. With FemtoChisel, we’ve addressed this challenge in our Large Volume Workflow for Semiconductors,” said Sirine Assaf, Chief Revenue Officer at Tescan. “It’s not just a new instrument – it’s a workflow enabler. By integrating ultrafast, femtosecond laser precision with intelligent adaptive laser processing, we’re helping labs accelerate sample preparation, reduce rework, and bring clarity to increasingly more complex devices.”

Workflow Benefits of FemtoChisel
Adaptive multi-material processing, High Fluence Laser Machining with proprietary intelligent multi-gas processing and laser protective layer that preserves device integrity across metals, polymers, and advanced packaging stacks.
High-throughput access to buried structures with taper-corrected, debris-free cross-sections – often eliminating the need for FIB finepolishing.
Selective backside thinning with mirror-like surfaces (Ra < 0.4 µm), enabling optical fault analysis without artifacts.
Large-area delayering (> 5 mm) with automated endpointing for accurate layer-by-layer removal at laser speeds.
By uniting laser processing, electron microscopy, and FIB into complementary workflows, Tescan is helping semiconductor innovators overcome traditional bottlenecks in sample preparation. FemtoChisel serves both recipe-driven environments and flexible research in advanced packaging and R&D labs, providing a versatile solution for current and future semiconductor demands.

Tescan’s commitment to integrated workflows is further strengthened by its Laser Technology Business Unit, established following the acquisition of FemtoInnovations. This dedicated focus ensures continued innovation in laser-enabled sample preparation technologies for the semiconductor industry.

Source: AZOM

Σχετικές προτάσεις
  • How to precisely control the cavity length of gallium nitride based vertical cavity surface emitting lasers?

    Gallium nitride (GaN) vertical cavity surface emitting laser (VCSEL) is a semiconductor laser diode with broad application prospects in various fields such as adaptive headlights, retinal scanning displays, nursing point testing systems, and high-speed visible light communication systems. Their high efficiency and low manufacturing costs make them particularly attractive in these applications.Gall...

    2024-06-12
    Δείτε τη μετάφραση
  • Xi'an Institute of Optics and Fine Mechanics has made significant progress in attosecond imaging research

    Recently, the Xi'an Institute of Optics and Fine Mechanics of the Chinese Academy of Sciences has made significant progress in attosecond imaging research, achieving high-resolution imaging of ultra wide spectrum light sources. The related results were published in the journal Photonics Research under the title "Snapshot coherent diffraction imaging across ultra wideband spectra".Figure 1. Demonst...

    2024-10-26
    Δείτε τη μετάφραση
  • Ultraviolet spectroscopy: a leap in accuracy and precision under extremely low light levels

    Ultraviolet spectroscopy plays a crucial role in the study of electronic transitions in atoms and rovibronic transitions in molecules. These studies are crucial for the testing of fundamental physics, quantum electrodynamics theory, determination of fundamental constants, precision measurements, optical clocks, high-resolution spectroscopy supporting atmospheric chemistry and astrophysics, and str...

    2024-03-08
    Δείτε τη μετάφραση
  • New Progress: III-V Laser and Silicon Optics Technology Achieve Single Chip High Integration

    Recently, Scientific Photonics, a supplier of silicon photonic integrated circuits (PICs) headquartered in Grenoble, announced that it has successfully integrated III-V-DFB lasers and amplifiers with standard silicon photonic technology into the production process of Tower Semiconductor.By utilizing proprietary technology and standard silicon photonics, Scientific Photonics has achieved full inte...

    2024-03-01
    Δείτε τη μετάφραση
  • China University of Science and Technology has made significant progress in the field of pure red perovskite light-emitting diodes

    Recently, four research groups from the University of Science and Technology of China, namely Yao Hongbin, Fan Fengjia, Lin Yue, and Hu Wei, have collaborated to make significant progress in the field of pure red perovskite light-emitting diodes (LEDs). The team independently invented the Electrical Excitation Transient Spectroscopy (EETA) technology and used it to reveal that hole leakage is the ...

    05-12
    Δείτε τη μετάφραση