Ελληνικά

Compact short pulse laser with an efficiency of up to 80%

75
2025-11-12 11:08:36
Δείτε τη μετάφραση

The research team from the University of Stuttgart and Stuttgart Instruments GmbH has published a groundbreaking research result in the journal Nature - a new compact ultra short pulse laser. This device achieves a significant improvement in efficiency while maintaining excellent precision, with its energy conversion efficiency reaching more than twice that of existing common devices. In addition, its volume has been significantly reduced, making it easy to hold in the hand and having a wide range of application potential. This progress provides an efficient alternative to the existing large volume, high cost short pulse systems in the manufacturing, medical, and scientific research fields.

 


Multipass optical parametric amplifier with laser beam: The new system demonstrates the development of highly efficient and compact short-pulse lasers. Credit: University of Stuttgart / Jonas Herbig and Johann Thannheimer

"With our new system, we can achieve levels of efficiency that were previously almost unattainable," says Prof. Harald Giessen, Head of the 4th Physics Institute at the University of Stuttgart. In tests, the team showed that short-pulse lasers can fundamentally reach 80% efficiency. In practical terms, 80% of the input power becomes usable output. "For comparison: current technologies achieve only about 35% -- which means they lose much of their efficiency and are correspondingly expensive," explains Giessen.

A lot of energy in an extremely short time

Short-pulse lasers emit bursts that last for only nano-, pico-, or femtoseconds (i.e., a few billionths to quadrillionths of a second). Because the pulses are so brief, a large amount of energy can be delivered to a tiny spot almost instantly. The setup combines a pump laser with the short-pulse laser. The pump laser delivers light energy to a special crystal. This crystal drives the process by transferring energy from the pump beam to the ultrashort signal pulse. In doing so, the incoming light particles are converted to infrared light. Infrared enables experiments, measurements, or production steps that visible light cannot achieve. In industry, short-pulse lasers are used in production -- for example, for precise and gentle material processing. They are also employed in medical imaging and in quantum research for exceptionally exact measurements at the molecular scale.

"Designing short-pulse lasers efficiently remains an unsolved challenge," explains Dr. Tobias Steinle, lead author of the study. "In order to generate short pulses, we need to amplify the incoming light beam and cover a wide range of wavelengths." Until now, it has not been possible to combine both properties simultaneously in a small and compact optical system." Wide-bandwidth laser amplifiers typically need crystals that are very short and thin. High-efficiency amplifiers, in contrast, favor much longer crystals. One workaround is to connect several short crystals in series, an approach already explored in research. Whatever the choice, the timing between the pump and signal pulses must stay synchronized.

New multipass concept

The team addresses this trade-off with a multipass strategy. Rather than relying on one long crystal or stacking many short ones, they run the light repeatedly through a single short crystal inside an optical parametric amplifier. After each pass, the separated pulses are carefully realigned to maintain synchronization. The result is a system that produces pulses shorter than 50 femtoseconds, takes up only a few square centimeters, and uses just five components.

"Our multipass system demonstrates that extremely high efficiencies need not to come at the expense of bandwidth," explains Steinle. "It can replace large and expensive laser systems with high power losses, which were previously required to amplify ultrashort pulses." The design can also be tuned for wavelengths beyond the infrared and adapted to different crystals and pulse durations. Building on this concept, the researchers aim to create small, lightweight, compact, portable, and tunable lasers that can set wavelengths with precision. Likely use cases include medicine, analytical techniques, gas sensing, and environmental monitoring.

Financial support came from the Federal Ministry of Research, Technology and Space (BMFTR) through the KMU-Innovativ program, the Federal Ministry for Economic Affairs and Energy (BMWE), the Baden-Wuerttemberg Ministry of Science, Research and the Arts, the German Research Foundation (DFG), the Carl Zeiss Foundation, the Baden-Wuerttemberg Foundation, the Center for Integrated Quantum Science and Technology (IQST), and the Innovation Campus Mobility of the Future (ICM). The work was carried out by the 4th Physics Institute of the University of Stuttgart in collaboration with Stuttgart Instruments GmbH under the MIRESWEEP project (a novel, cost-effective tunable mid-infrared laser source for analytical applications).

Source: ScienceDaily

Σχετικές προτάσεις
  • The researchers expect the EUV lithography market to grow from $9.4 billion in 2023 to $25.3 billion in 2028

    The researchers estimate the period from 2023 to 2028. EUV lithography will address the limitations of traditional optical lithography, which has reached its physical limits in terms of resolution. The shorter wavelength of EUV light allows for the creation of smaller features and tighter patterns on silicon wafers, enabling the manufacture of advanced microchips with greater transistor densities....

    2023-08-04
    Δείτε τη μετάφραση
  • APE 2025 is about to take place

    The Asia Optoelectronic Expo 2025 (APE 2025) will be held from February 26 to 28, 2025 at the Marina Bay Sands Convention and Exhibition Centre in Singapore. It covers products such as information and communication, optics, lasers, infrared, sensing, display, quantum, and is a one-stop optoelectronic comprehensive platform for the optoelectronic industry and application fields; The exhibition focu...

    02-18
    Δείτε τη μετάφραση
  • Ultra thin two-dimensional materials can rotate the polarization of visible light

    For centuries, people have known that light exhibits wave like behavior in certain situations. When light passes through certain materials, they can change the polarization of light waves (i.e. the direction of oscillation). The core components of optical communication networks, such as optical isolators or photodiodes, utilize this characteristic. This type of component allows light to propagate ...

    2024-04-27
    Δείτε τη μετάφραση
  • 2D photoelectric neuron array can achieve broadband and low loss optical nonlinearity accessible to ambient light

    Light can calculate functions during propagation and interaction with structured materials, with fast speed and low energy consumption. The use of all optical neural networks for general computing requires an optical activation layer with nonlinear dependence on the input. However, existing optical nonlinear materials either have slow speeds or very weak nonlinearity at the level of natural light ...

    2024-03-20
    Δείτε τη μετάφραση
  • Aerotech announces new control features for laser scanning heads

    Aerotech has upgraded the performance of AGV laser scanning heads through powerful controller functions to enhance scanner control (ESC). The new ESC function of the Automation 1-GL4 2-axis laser scanning head driver is a completely passive control loop enhancement function that ensures higher accuracy in the most dynamic motion.With the increasing demand for higher output laser technology in vari...

    2024-06-04
    Δείτε τη μετάφραση