Ελληνικά

Fiber coupled single photon source meets the requirements of quantum computing

69
2025-10-27 10:40:18
Δείτε τη μετάφραση

Due to the ability of quantum computers to crack many encryption methods used in current communication systems, the security of our current communication systems is facing threats. To address this crisis, scientists are developing quantum communication systems that utilize quantum mechanics to provide stronger security. A key component of these systems is the single photon source. In order for quantum communication systems to function properly, single photons must be injected into optical fibers with extremely low loss.

 



In conventional systems, single-photon emitters, such as quantum dots and rare-earth element ions, are placed outside the fiber. These photons then must be guided to enter the fiber. However, not all photons make it into the fibers, causing high transmission loss. For practical quantum communication systems, it is necessary to achieve a high-coupling and channeling efficiency between the optical fiber and the emitter.

A research team led by associate professor Kaoru Sanaka from the department of physics at Tokyo University of Science has found a solution to this issue. The team members have developed a highly efficient fiber-coupled single-photon source, where single photons are generated directly inside an optical fiber. Unlike previous approaches, a single atom was selectively excited in this method.

“In our approach, a single isolated rare-earth ion confined in a tapered optical fiber is selectively excited by a laser to generate single photons,” Sanaka said. “Unlike conventional approaches, where single-photon generation and transmission are separate steps, here single photons can be generated and efficiently guided directly within the fiber with significantly reduced loss.”

The team first prepared a silica fiber doped with neodymium ions (Nd3+). Nd3+ were selected because they can emit photons across a wide range of wavelengths, including telecom standard, making them versatile for different quantum applications. The doped silica fibers were then tapered using a heat-and-pull process, wherein a section of the fiber is heated and pulled to gradually reduce its thickness. This process allowed them to access spatially separated individual Nd3+ within the tapered section. This resulted in a novel approach where a single Nd3+ was selectively excited using a pump laser at room temperature, generating single photons directly into the fiber's guided mode. For testing, the emitted photons were then collected from one end of the fiber.

Using an analytical approach called autocorrelation, where a photon signal is compared with its delayed version, the researchers experimentally validated that only one photon was being emitted at a time and that they can be efficiently guided within the fiber. The team also confirmed that the tapering of the fiber does not alter the natural optical properties of the ion. Notably, the results showed that this approach was significantly more efficient in collecting photons than their previous non-selective excitation method, where multiple Nd3+ were excited together. This collection efficiency can be enhanced even further if photons are collected from both sides of the fiber.

“Our approach allows highly efficient transmission of single photons from source to end,” Sanaka said.

Since this method uses commercially available optical fibers, it is cost-effective, wavelength selectable, and straightforward to integrate into a fiber-based communication network. Moreover, unlike most current quantum technologies that require expensive cryogenic systems, this system operates at room temperature. These features can make this system a strong candidate for next-generation all-fiber-integrated quantum communication networks.

Beyond quantum communications, this approach could also power future quantum computing technologies.

“By individually operating multiple isolated ions within the same fiber, it is possible to develop a multi-qubit processing unit. It may also enable qubit encoding protocols,” said Sanaka.

Further studies should focus on improving the wavelength of single photons to realize in practical settings of spectroscopy and imaging analysis, the researchers said. Overall, this fiber-coupled single-photon source represents a major step for practical quantum technologies, paving the way for secure, unhackable communication networks.

Source: photonics

Σχετικές προτάσεις
  • 国内自主研发首套碳化硅晶锭激光剥离设备投产

           近日,从江苏通用半导体有限公司传来消息,由该公司自主研发的国内首套的8英寸碳化硅晶锭激光全自动剥离设备正式交付碳化硅衬底生产领域头部企业广州南砂晶圆半导体技术有限公司,并投入生产。 图:8英寸SiC晶锭激光全自动剥离设备       该设备可实现6英寸和8英寸碳化硅晶锭的全自动分片,包含晶锭上料、晶锭研磨、激光切割、晶片分离和晶片收集,一举填补了国内碳化硅晶锭激光剥离设备领域研发、制造的市场空白,突破了国外的技术封锁,将极大地提升我国碳化硅芯片产业的自主化、产业化水平。       该设备年可剥离碳化硅衬底20000片,实现良率95%以上,与传统的线切割工艺相比,大幅降低了产品损耗,而设备售价仅仅是国外同类产品的1/3。       近年来,碳化硅功率器件在大功率半导体市场中所占的份额不断提高,并被广泛应用于新能源汽车、城市轨道交通、风力发电、高速移动、物联网等一系列领域...

    2024-08-26
    Δείτε τη μετάφραση
  • The scientific research team of Shenzhen University of Technology has discovered a new mechanism of attosecond pulse coherent radiation

    Recently, a team of Professor Ruan Shuangchen and Professor Zhou Cangtao from Shenzhen University of Technology proposed for the first time internationally a physical solution based on the generation of attosecond pulses and subperiodic coherent light shock radiation from a superluminal plasma wake field, and explained a new coherent radiation generation mechanism dominated by collective electron ...

    2023-10-14
    Δείτε τη μετάφραση
  • Laser&Photonics Reviews New Type Quartz Crystal Space Harmonic Modulation for Efficient Vacuum UV Laser

    Professor Zhang Huaijin and Yu Haohai from the Institute of Crystal Materials of Shandong University (the State Key Laboratory of Crystal Materials) proposed a spatial harmonic modulation strategy, which realizes the phase matching conditions that can be manipulated artificially in the new quartz crystal, and realizes the effective frequency doubling within the VUV range. The relevant research is ...

    2023-08-30
    Δείτε τη μετάφραση
  • Industrial blue light laser developer Nuburu adds new director

    Not long ago, Nuburu, the developer of industrial blue light lasers, encountered a personnel change controversy. The departure of two senior executives from its board of directors resulted in a shortage of board members, and the originally scheduled special meeting for financing proposals was forced to be cancelled as a result. Recently, Nuburu announced two new director appointments that will tak...

    01-10
    Δείτε τη μετάφραση
  • Fiber laser array for single pixel imaging is expected to achieve remote detection

    Single pixel imaging (SPI) is a novel computational imaging technique that has been widely studied in recent years. This technology only uses single pixel detectors without spatial resolution to obtain spatial information of targets.It has unique advantages and compensates for the shortcomings of traditional imaging technologies based on array detectors, such as relatively immature or expensive ar...

    2024-05-15
    Δείτε τη μετάφραση