Ελληνικά

NIST utilizes laser reflection to enhance 3D metal printing

522
2025-09-18 10:34:55
Δείτε τη μετάφραση

A project at NIST has developed a new way to monitor and assess 3D printing of metals.
Finding and correcting defects inadvertently created inside a 3D printed part is one of the biggest challenges for metal printing, commented NIST. But getting a close look at the printing operation as it's underway is not easy.

As well as the toxicity of the raw materials, there can be a risk of combustion or explosion, compelling the use of sealed manufacturing platforms or inert gas atmospheres. And at the exact location where a laser is acting on metal particles to create a melt pool, sputtering clouds of cold powder and molten metal make for a dynamic environment.

 

 

 

Caustic diagnostic: defects spotted


"It would be very helpful to monitor how the print is going in real time," said David Deisenroth from the NIST Production Systems Group. "Is the part getting too hot? Are there any defects? We want to be able to adjust the printer to address these problems because it will lead to stronger and more consistent parts."

The NIST solution involves caustics, the everyday optical phenomenon in which light rays reflected or refracted by a curved surface are focused onto a flat surface creating a pattern of illumination. Light passing through a glass of water creates caustics visible as the patterns of focused light next to the glass. A rainbow is also a caustic, with light refracted into arcs of differing radius.

In the case of metal printing, some of the laser light reflects off the surface of the metal during the printing process creating caustics. NIST theorized that the pattern of this reflection can give information about the shape of the liquid metal’s surface.

Reflections on a curved dome

NIST made use of its Fundamentals of Laser-Matter Interaction testbed, or FLaMI, a laboratory 3D printing platform designed to allow researchers to study laser-matter interactions in additive manufacturing operations.

Deisenroth outfitted the test bed with a hollow dome about the size and shape of a basketball cut in half, originally sold as an architectural decoration. This covers the metal sample that will be melted with the laser, and has a small slit at the top where the laser can pass through.

The dome was designed to catch all the light caustics reflected by the laser, in the same way that the underside of a bridge catches the light reflected off a river. High-speed video of the inside of this dome gave NIST data about how light was reflecting off the metal melt pool.

"The biggest challenge was creating a coating for the inside of the dome that would reflect the laser light only once," noted Deisenroth. "If the dome were too reflective, the light would bounce around many times, and it would look uniform. If it wasn’t reflective enough, we wouldn't see any light at all."

In proof-of-concept trials, Deisenroth successfully used the reflected light to identify the creation of particular flaws termed keyhole pores, formed when vaporized metal at the melt pool's surface presses a pit into the metal part. The optical data also allowed an estimation of how deep the keyhole pit was.

The next steps will include increasing the video frame rate from its current 60,000 fps to a much faster level, ideally up to 825,000 fps.

"The lasers we use are invisible to the eye, and the reflections move so fast that you can only see them with a high-speed camera," commented Deisenroth. "It's amazing to think that we can capture these caustics in action and draw meaning out of them."

Source: optics.org

Σχετικές προτάσεις
  • Optimizing the phase focusing of laser accelerators

    With the help of on-chip accelerator technology, researchers at Stanford University are getting closer to manufacturing a miniature electron accelerator that can have various applications in industrial, medical, and physical research.Scientists have proven that silicon dielectric laser accelerators can now be used to accelerate and limit electrons, thereby producing concentrated high-energy electr...

    2024-02-29
    Δείτε τη μετάφραση
  • Progress has been made in the research of single shot characterization technology for complex combination laser pulses at Shanghai Institute of Optics and Fine Mechanics

    Recently, the research team of the High Power Laser Physics Joint Laboratory at the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, has made significant progress in the study of single shot characterization technology for complex combination laser pulses. The research team utilized an improved broadband transient grating frequency resolved optical switch technology (T...

    03-24
    Δείτε τη μετάφραση
  • TRUMPF high-power laser dynamic beam shaping technology creates opportunities for the electric vehicle industry

    It is reported that researchers from TRUMPF in Germany reported research on using dynamic beam shaping of high-power lasers to improve the productivity of hairpin stators, creating opportunities for the electric vehicle industry. Relevant research was published in "PhotonicsViews" under the title "Unlocking opportunities for the EV industry with beam shaping of high-power lasers".The electric vehi...

    2024-07-01
    Δείτε τη μετάφραση
  • 国内自主研发首套碳化硅晶锭激光剥离设备投产

           近日,从江苏通用半导体有限公司传来消息,由该公司自主研发的国内首套的8英寸碳化硅晶锭激光全自动剥离设备正式交付碳化硅衬底生产领域头部企业广州南砂晶圆半导体技术有限公司,并投入生产。 图:8英寸SiC晶锭激光全自动剥离设备       该设备可实现6英寸和8英寸碳化硅晶锭的全自动分片,包含晶锭上料、晶锭研磨、激光切割、晶片分离和晶片收集,一举填补了国内碳化硅晶锭激光剥离设备领域研发、制造的市场空白,突破了国外的技术封锁,将极大地提升我国碳化硅芯片产业的自主化、产业化水平。       该设备年可剥离碳化硅衬底20000片,实现良率95%以上,与传统的线切割工艺相比,大幅降低了产品损耗,而设备售价仅仅是国外同类产品的1/3。       近年来,碳化硅功率器件在大功率半导体市场中所占的份额不断提高,并被广泛应用于新能源汽车、城市轨道交通、风力发电、高速移动、物联网等一系列领域...

    2024-08-26
    Δείτε τη μετάφραση
  • Researchers have created an X Lidar lidar to help airports operate during volcanic eruptions

    Engineer and inventor Ezequiel Pawelko is one of the creators of X Lidar, a laser technology that can detect volcanic ash in the atmosphere, draw safe flight paths, and maintain airport operations during volcanic eruptions. Nowadays, he is engaged in other applications such as detecting space debris, monitoring natural resources and fisheries, preventing fires, and drawing radiation and wind maps ...

    2023-12-27
    Δείτε τη μετάφραση