Ελληνικά

The University of Stuttgart has simplified the detection of nanoplastics

23
2025-09-15 10:36:06
Δείτε τη μετάφραση

Detecting the presence of nanoscale plastic particles in the environment has become a topic of concern for industrial societies worldwide, not least since particles of that size can evade the body's blood-brain barrier and damage metabolic processes.
Optical technologies have been at the forefront of these monitoring efforts. Recent examples have included the use of stimulated Raman scattering to spot nanoplastics in ocean waters and in popular brands of bottled water, with the latter study finding more extensive contamination than previously suspected.

A project from the University of Stuttgart and the University of Melbourne has now demonstrated a new method for the straightforward analysis of tiny nanoplastic particles in environmental samples, one needing only an ordinary optical microscope.

 


Enter the void: nanoplastics in nanoscale holes


Described in Nature Photonics the technique could serve as a valuable new tool in environmental and health research.

"Compared with conventional and widely used methods such as scanning electron microscopy, the new method is considerably less expensive, does not require trained personnel to operate, and reduces the time required for detailed analysis," commented Mario Hentschel from the 4th Physics Institute, the University of Stuttgart's ultrafast nano-optics research center.

The technique is based around an optical sieve, a strip of semiconductor substrate manufactured with arrays of tiny voids of different diameters. Optical resonance effects under incident light cause these holes to act as Mie voids, a phenomenon studied at Stuttgart since 2023 in which light is confined and forced to interact with whatever matter is contained within the holes.

On-site environmental testing of water or soil

Depending on their diameter and depth, the Mie voids catch nanoplastic particles of different diameters, which then interact characteristically with incident light to create a bright color reflection that can be seen in an optical microscope. When a particle falls into one of the indentations its color changes noticeably, allowing an observer to infer from the changing color that a nanoplastic is present in the void.

"The test strip works like a classic sieve," said Stuttgart's Dominik Ludescher. "Particles are filtered out of the liquid using the sieve in which the size and depth of the holes can be adapted to the nanoplastic particles, and subsequently detected by the resulting color change."

For a proof-of-concept trial the team used a real-world water sample taken from a lake which already containined sand and other organic components, and added spherical nanoplastic particles at a concentration on 150 micrograms per ml. When the sample was passed through the optical sieve and illuminated, statistical information on numbers, size and size distribution of the particles was successfully derived from observation of distinct colour changes.

The project team now plans experiments with nanoplastic particles that are not spherical, and to investigate whether the process can be used to distinguish between particles of different plastics.

"In the long term, the optical sieve will be used as a simple analysis tool in environmental and health research," said Mario Hentschel. "The technology could serve as a mobile test strip that would provide information on the content of nanoplastics in water or soil directly on site."

Source: optics.org

Σχετικές προτάσεις
  • Aspen Laser launches patented four wavelength Ascent laser series in the medical equipment industry

    Recently, Aspen Laser, an emerging global leader in the medical equipment industry, announced that after several months of trial operation, it has officially launched the Ascent laser series and is ready for shipment. It is reported that this new therapeutic laser series, with its outstanding 32 watt combined power and unique patented four wave laser technology in the industry, once again demons...

    2024-08-12
    Δείτε τη μετάφραση
  • Scientists propose new methods to accelerate the commercialization of superlens technology

    Superlenses are nano artificial structures that can manipulate light, providing a technique that can significantly reduce the size and thickness of traditional optical components. This technology is particularly effective in the near infrared region, and has great prospects in various applications, such as LiDAR, which is called "the eye of autonomous vehicle", mini UAV and blood vessel detector.D...

    2024-03-29
    Δείτε τη μετάφραση
  • Xi'an Institute of Optics and Fine Mechanics: New progress in large field two-photon scattering microscopy imaging technology

    Adaptive optics is a technique that improves imaging quality by correcting wavefront distortion. Interference focus sensing (IFS), as a new method proposed in the field of adaptive optics in recent years, has been proven to have significant effects in correcting complex aberrations in deep tissue imaging. This technology is based on measuring a single location within the sample to determine the ca...

    04-15
    Δείτε τη μετάφραση
  • EV Group launches EVG 850 NanoClean system for ultra-thin chip stacking for advanced packaging

    EV Group, a leading supplier of wafer bonding and lithography equipment in the MEMS, nanotechnology, and semiconductor markets, yesterday launched the EVG850 NanoClean layer release system, which is the first product platform to adopt EVG's revolutionary NanoClean technology.The EVG850 NanoClean system combines infrared lasers with specially formulated inorganic release materials, and can ...

    2023-12-08
    Δείτε τη μετάφραση
  • Scientists use tiny nitrogen defects in the atomic structure of diamonds as "color centers" to write data for storage

    Scientists at the City University of New York use tiny nitrogen defects in the atomic structure of diamonds as "color centers" to write data for storage. This technology is published in the journal Nature Nanotechnology and allows for encoding multiple bytes of data into the same nitrogen defect at multiple optical frequencies, without confusing the information content.The common laser based techn...

    2023-12-07
    Δείτε τη μετάφραση